mixing of gases
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23
Author(s):  
Dan Liu

The compositional carbon isotopic seriesδ13C-CH4<δ13C-C2H6<δ13C-C3H8<δ13C-C4H10is common in thermogenic gases. With the exploration of deeper strata, however, isotopic reversals (δ13C-CH4>δ13C-C2H6>δ13C-C3H8) in overmature unconventional shale gases and conventional (coal-derived) gases have been identified. Paleozoic gases in the southern Ordos Basin, China, with partial or complete isotopic reversals, were studied as examples of isotopic fractionation in overmature coal-derived gases. Isotopic compositions of gases of different maturities from the Ordos Basin and shale gases from around the world were compared. Results indicate that carbon isotopic series are related to maturity. Complete isotopic reversal occurs mostly in regions with vitrinite reflectanceRo>2.4%. Where2.4%>Ro>2.0%, almost all gases display partial isotopic reversal, withδ13C-CH4>δ13C-C2H6orδ13C-C2H6>δ13C-C3H8. Carbon isotopic reversal in coal-derived gases is not caused by abiotic origin, the mixing of gases from different types of source rock, abiotic polymerization, wet gas cracking, and other mechanisms that contribute to reversal in shale gases. Based on the unique structure of coaly source rock and the geology of the Ordos Basin, closed-system aromatization-polycondensation reactions are considered the most likely cause of carbon isotopic reversal. During the reactions, isotopically light gases are generated by recombination of previously formed hydrocarbons and residual kerogen-coal. Hydrogen isotopic reversal in the southern Ordos Basin might also be caused by aromatization-polycondensation reactions.


2016 ◽  
Vol 46 (suppl 1) ◽  
pp. 181-196 ◽  
Author(s):  
Héctor Adolfo Ostera ◽  
Roberto García ◽  
Daniel Malizia ◽  
Pablo Kokot ◽  
Leonel Wainstein ◽  
...  

ABSTRACT: In order to enhance the knowledge of shale objectives from Vaca Muerta and Los Molles Formations in the Neuquén Basin, Argentina, chemostratigraphic and mud gas carbon isotope analyses were performed in two wells from Agua del Cajón and Salitral oilfields (ADC-1016 and NqSa-1148). Geochemical data show restricted levels in both cases to perforate and produce. In ADC-1016 well, Lower Los Molles Formation looks like the most suitable play to be produced. At El Salitral oilfield (NqSa-1148), the best remarkable Vaca Muerta-Quintuco objectives are associated with authigenic elements, in limited horizons. Enhancement of the Quintuco reservoir by deep circulating fluids (thermobaric reservoir) is suggested. Carbon isotope analysis reveals complex processes that affected the gas composition. Addition of microbial methane, biodegradation of ethane-propane and mixing of gases has been recognized. Isotope reversals and presumed water reforming of hydrocarbons have been registered associated with overpressure for Lower Los Molles Formation in the ADC-1016 well, which is pointed out as the most promising shale play in the area. Vaca Muerta gases at Agua del Cajon ADC- 1016 well are associated with the homonymous source. El Salitral 1148 well shows that primary isotope composition in gases from Vaca Muerta shale play and Quintuco reservoir could be associated with a Lower Los Molles source, an aloctonous charge related with the main structures of the area.


2016 ◽  
Vol 51 (11-12) ◽  
pp. 759-764 ◽  
Author(s):  
D. T. Gareeva ◽  
N. A. Lavrov

Author(s):  
Sidharth Paranjape ◽  
Guillaume Mignot ◽  
Domenico Paladino

The results of an experimental study on the nuclear reactor containment spray system are presented. Depending on the initial conditions, the spray nozzle configuration and flow rates, the spray may cause higher hydrogen concentration during depressurization due to steam condensation, or it may erode the hydrogen stratification by enhanced mixing. To investigate these phenomena, the tests are performed using a full-cone spray nozzle in PANDA facility at Paul Scherrer Institut, Switzerland. Temporal evolution and spatial distribution of the fluid temperature and the fluid concentrations are measured using thermocouples and mass spectrometers. Two tests are performed with initial vessel wall temperatures of 105°C and 135°C, which create condensing and non-condensing environments respectively. The different initial conditions lead to different density stratifications. The effect of these different density stratification on the flow patterns and mixing of gases in the vessels due to the action of the spray is revealed by these tests.


2013 ◽  
Vol 86 (3) ◽  
pp. 540-546 ◽  
Author(s):  
P. S. Grinchuk ◽  
M. V. Kiyashko ◽  
Yu. A. Stankevich ◽  
S. P. Fisenko

Author(s):  
Bruce J. Hardy ◽  
Stephen P. Harris ◽  
Matthew J. Arnold ◽  
Stephen J. Hensel

The Can Puncture Device (CPD) serves as a containment vessel during the puncture of nested 3013 containers as part of surveillance operations in K-Area. The purpose of the CPD sampling process is to determine the original pressure and composition of gasses within the inner 3013 container. The relation between the composition of the gas sample drawn from the CPD and that originally in the inner 3013 container depends on the degree of mixing that occurs over the interval of time from the puncture to drawing the sample. Gas mixing is bounded by the extremes of no mixing of gases in the inner container and that of complete mixing, in which case the entire CPD system is of uniform composition. Models relating the sample composition and pressure to the initial (pre-puncture) inner can composition and pressure for each of these extremes were developed. Predictions from both models were compared to data from characterization experiments. In the comparison, it was found that the model that assumed complete gas mixing after puncture, the Uniform Mixing Model, showed significantly better agreement with the data than the model that assumed no change in the composition of the inner container, referred to as the Non-Uniform Mixing Model. Both models were implemented as Microsoft® Excel spreadsheet calculations, which utilize macros, to include the effects of uncertainties and biases in the measurements of process parameters and in the models. Potential inleakage of gas from the glovebox is also addressed. The spreadsheet utilizing the Uniform Mixing Model, which was validated by data from the characterization tests, is used to evaluate the pre-puncture composition and pressure within the inner 3013 container. This spreadsheet model is called the Gas Evaluation Software Tool (GEST).


Sign in / Sign up

Export Citation Format

Share Document