Dynamic Response of a Turbulent Cylinder Wake to Forced Excitation

Author(s):  
Efstathios Konstantinidis ◽  
Chunlei Liang

Three-dimensional large-eddy simulations were carried out to determine the dynamic response of a turbulent cylinder wake to forced excitation at a subcritical Reynolds number of 2580. The excitation frequency was varied across the primary lock-on range while the amplitude of sinusoidal velocity perturbation and the mean velocity imposed at the inflow boundary were kept constant. The velocity fluctuations in the wake and the fluctuating forces on the cylinder are analyzed employing spectral, time-domain and phase-portrait methods. The results show that the dynamic response of the inline force is different than that of the transverse one on the border of the lock-on range; while the inline force exhibits a phase-locked response, the transverse force indicates an intermittent response. This behavior is linked to the wake dynamics which is similar to that of the transverse force. This result is explained on the basis of the Morison equation which shows that the inline force is biased by the inertial components associated with the added mass and pressure waves in unsteady flows. It is further shown that the existence of a mean velocity component alters radically the dynamics of the inline force and appropriate ranges of a dimensionless parameter are proposed to describe the response.

2019 ◽  
Vol 128 ◽  
pp. 05002
Author(s):  
Ali Cemal Benim ◽  
Michael Diederich ◽  
Ali Nahavandi

The present paper presents a detailed computational analysis of flow and dispersion in a generic isolated single–zone buildings. First, a grid generation strategy is discussed, that is inspired by a previous computational analysis and a grid independence study. Different turbulence models are appliedincluding two-equation turbulence models, the differential Reynolds Stress Model, Detached Eddy Simulation and Zonal Large Eddy Simulation. The mean velocity and concentration fields are calculated and compared with the measurements. A satisfactory agreement with the experiments is not observed by any of the modelling approaches, indicating the highly demanding flow and turbulence structure of the problem.


2019 ◽  
Vol 58 (5) ◽  
pp. 1039-1059 ◽  
Author(s):  
Edward G. Patton ◽  
Peter P. Sullivan ◽  
Branko Kosović ◽  
Jimy Dudhia ◽  
Larry Mahrt ◽  
...  

AbstractA combination of turbulence-resolving large-eddy simulations and observations are used to examine the influence of swell amplitude and swell propagation angle on surface drag. Based on the analysis a new surface roughness parameterization with nonequilibrium wave effects is proposed. The surface roughness accounts for swell amplitude and wavelength and its relative motion with respect to the mean wind direction. The proposed parameterization is tested in uncoupled three-dimensional Weather and Research Forecasting (WRF) simulations at grid sizes near 1 km where we explore potential implications of our modifications for two-way coupled atmosphere–wave models. Wind–wave misalignment likely explains the large scatter in observed nondimensional surface roughness under swell-dominated conditions. Andreas et al.’s relationship between friction velocity and the 10-m wind speed under predicts the increased drag produced by misaligned winds and waves. Incorporating wave-state (speed and direction) influences in parameterizations improves predictive skill. In a broad sense, these results suggest that one needs information on winds and wave state to upscale buoy measurements.


Author(s):  
Takuma Katayama ◽  
Shinsuke Mochizuki

The present experiment focuses on the vorticity diffusion in a stronger wall jet managed by a three-dimensional flat plate wing in the outer layer. Measurement of the fluctuating velocities and vorticity correlation has been carried out with 4-wire vorticity probe. The turbulent vorticity diffusion due to the large scale eddies in the outer layer is quantitatively examined by using the 4-wire vorticity probe. Quantitative relationship between vortex structure and Reynolds shear stress is revealed by means of directly measured experimental evidence which explains vorticity diffusion process and influence of the manipulating wing. It is expected that the three-dimensional outer layer manipulator contributes to keep convex profile of the mean velocity, namely, suppression of the turbulent diffusion and entrainment.


Author(s):  
Alain Demeulenaere ◽  
Olivier Léonard ◽  
René Van den Braembussche

The use of a three-dimensional Euler inverse method for the design of a centrifugal impeller is demonstrated. Both the blade shape and the endwalls are iteratively designed. The meridional contour is modified in order to control the mean velocity level in the blade channel, while the blade shape is designed to achieve a prescribed loading distribution between the inlet and the outlet. The method salves the time dependent Euler equations in a numerical domain of which some boundaries (the blades or the endwalls) move and change shape during the transient part of the computation, until a prescribed pressure distribution is achieved on the blade surfaces. The method is applied to the design of a centrifugal compressor impeller, whose hub endwall and blade surfaces are modified by the inviscid inverse method. The real performance of both initial and modified geometries are compared through three-dimensional Navier-Stokes computations.


1965 ◽  
Vol 22 (2) ◽  
pp. 285-304 ◽  
Author(s):  
A. E. Perry ◽  
P. N. Joubert

The purpose of this paper is to provide some possible explantions for certain observed phenomena associated with the mean-velocity profile of a turbulent boundary layer which undergoes a rapid yawing. For the cases considered the yawing is caused by an obstruction attached to the wall upon which the boundary layer is developing. Only incompressible flow is considered.§1 of the paper is concerned with the outer region of the boundary layer and deals with a phenomenon observed by Johnston (1960) who described it with his triangular model for the polar plot of the velocity distribution. This was also observed by Hornung & Joubert (1963). It is shown here by a first-approximation analysis that such a behaviour is mainly a consequence of the geometry of the apparatus used. The analysis also indicates that, for these geometries, the outer part of the boundary-layer profile can be described by a single vector-similarity defect law rather than the vector ‘wall-wake’ model proposed by Coles (1956). The former model agrees well with the experimental results of Hornung & Joubert.In §2, the flow close to the wall is considered. Treating this region as an equilibrium layer and using similarity arguments, a three-dimensional version of the ‘law of the wall’ is derived. This relates the mean-velocity-vector distribution with the pressure-gradient vector and wall-shear-stress vector and explains how the profile skews near the wall. The theory is compared with Hornung & Joubert's experimental results. However at this stage the results are inconclusive because of the lack of a sufficient number of measured quantities.


2009 ◽  
Vol 628 ◽  
pp. 371-394 ◽  
Author(s):  
D. C. ROACH ◽  
A. G. L. HOLLOWAY

This paper describes an experiment in which a uniformly sheared turbulence was subjected to simultaneous streamwise flow curvature and rotation about the streamwise axis. The distortion of the turbulence is complex but well defined and may serve as a test case for turbulence model development. The uniformly sheared turbulence was developed in a straight wind tunnel and then passed into a curved tunnel section. At the start of the curved section the plane of the mean shear was normal to the plane of curvature so as to create a three-dimensional or ‘out of plane’ curvature configuration. On entering the curved tunnel, the flow developed a streamwise mean vorticity that rotated the mean shear about the tunnel centreline through approximately 70°, so that the shear was nearly in the plane of curvature and oriented so as to have a stabilizing effect on the turbulence. Hot wire measurements of the mean velocity, mean vorticity, mean rate of strain and Reynolds stress anisotropy development along the wind tunnel centreline are reported. The observed effect of the mean shear rotation on the turbulence was to diminish the shear stress in the plane normal to the plane of curvature while generating non-zero values of the shear stress in the plane of curvature. A rotating frame was identified for which the measured mean velocity field took the form of a simple shear flow. The turbulence anisotropy was transformed to this frame to estimate the effects of frame rotation on the structure of sheared turbulence.


1988 ◽  
Vol 110 (2) ◽  
pp. 110-119 ◽  
Author(s):  
Y. T. Chew ◽  
R. L. Simpson

An explicit non-real time method of reducing triple sensor hot-wire anenometer data to obtain the three mean velocity components and six Reynolds stresses, as well as their turbulence spectra in three-dimensional flow is proposed. Equations which relate explicitly the mean velocity components and Reynolds stresses in laboratory coordinates to the mean and mean square sensors output voltages in three stages are derived. The method was verified satisfactorily by comparison with single sensor hot-wire anemometer measurements in a zero pressure gradient incompressible turbulent boundary layer flow. It is simple and requires much lesser computation time when compared to other implicit non-real time method.


2008 ◽  
Vol 38 (11) ◽  
pp. 2587-2596 ◽  
Author(s):  
George L. Mellor

Abstract This is a revision of a previous paper dealing with three-dimensional wave-current interactions. It is shown that the continuity and momentum equations in the absence of surface waves can include waves after the addition of three-dimensional radiation stress terms, a fairly simple alteration for numerical ocean circulation models. The velocity that varies on time and space scales, which are large compared to inverse wave frequency and wavenumber, is denoted by ûα and, by convention, is called the “current.” The Stokes drift is labeled uSα and the mean velocity is Uα ≡ ûα + uSα. When vertically integrated, the results here are in agreement with past literature. Surface wind stress is empirical, but transfer of the stress into the water column is a function derived in this paper. The wave energy equation is derived, and terms such as the advective wave velocity are weighted vertical integrals of the mean velocity. The wave action equation is not an appropriate substitute for the wave energy equation when the mean velocity is depth dependent.


1979 ◽  
Vol 92 (2) ◽  
pp. 269-301 ◽  
Author(s):  
R. E. Britter ◽  
J. C. R. Hunt ◽  
J. C. Mumford

The flow of grid-generated turbulence past a circular cylinder is investigated using hot-wire anemometry over a Reynolds number range from 4·25 × 103 to 2·74 × 104 and a range of intensities from 0·025 to 0·062. Measurements of the mean velocity distribution, and r.m.s. intensities and spectral energy densities of the turbulent velocity fluctuations are presented for various radial and circumferential positions relative to the cylinder, and for ratios of the cylinder radius a to the scale of the incident turbulence Lx ranging from 0·05 to 1·42. The influence of upstream conditions on the flow in the cylinder wake and its associated induced velocity fluctuations is discussed.For all measurements, detailed comparison is made with the theoretical predictions of Hunt (1973). We conclude the following. The amplification and reduction of the three components of turbulence (which occur in different senses for the different components) can be explained qualitatively in terms of the distortion by the mean flow of the turbulent vorticity and the ‘blocking’ or ‘source’ effect caused by turbulence impinging on the cylinder surface. The relative importance of the first effect over the second increases as a/Lx increases or the distance from the cylinder surface increases.Over certain ranges of the variables involved, the measurements are in quantitative agreement with the predictions of the asymptotic theory when a/Lx [Lt ] 1, a/Lx [Gt ] 1 or |k| a [Gt ] 1 (where k is the wavenumber).The incident turbulence affects the gross properties of the flow in the cylinder wake, but the associated velocity fluctuations are probably statistically independent of those in the incident flow.The dissipation of turbulent energy is greater in the straining flow near the cylinder than in the approach flow. Some estimates for this effect are proposed.


1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.


Sign in / Sign up

Export Citation Format

Share Document