Development of Modelling Guidelines for Stress Analysis of Pressure Vessel Bolted Closures

Author(s):  
A. Towse ◽  
A. Mills ◽  
D. Griffin ◽  
P. Hurrell ◽  
D. Rowe ◽  
...  

This paper describes some of the outcomes of the development of finite element modelling guidelines for the stress analysis of bolted joints in pressure vessels and piping. The modelling methods originally developed at Rolls-Royce typically used 2D axisymmetric models as this was deemed adequate at the time. However, computing software and hardware improvements have subsequently been made which enable more realistic 3D bolted joint models to be solved where a greater level of geometric detail is required. For example the bolts, nuts and perforated flanges can now be represented more realistically reducing the degree of geometric abstraction that is required. Also, modern finite element codes such as ABAQUS and ANSYS now offer gasket elements which enable the initial compression, in-service performance and unloading of the joint to be modelled more realistically. Additionally, contact techniques can also be used to simulate the axial and radial distribution of thread load in the joint which will affect the stress distribution remote from the threaded region. Consequently, the modelling guidelines have been updated and provide guidance for stress engineers to decide which degree of model complexity is warranted.

2015 ◽  
Vol 816 ◽  
pp. 443-450
Author(s):  
František Trebuňa ◽  
Miroslav Pástor ◽  
Peter Frankovský ◽  
Ján Kostka ◽  
Ľubomír Gabáni

Nowadays, the most spread method for the solution of contact problems is based on numerical modelling. The bolted joints belong to the complex contact problems. In the paper is given methodology for the stress analysis of bolted joints with modification in the area of the first threads on the nut by the optical method. The stress analysis has been accomplished for the bolted joint without as well as with modification. The results of experimental measurements were verified by numerical modelling by the finite element method.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


2012 ◽  
Vol 538-541 ◽  
pp. 3253-3258 ◽  
Author(s):  
Jun Jian Xiao

According to the results of finite element analysis (FEA), when the diameter of opening of the flat cover is no more than 0.5D (d≤0.5D), there is obvious stress concentration at the edge of opening, but only existed within the region of 2d. Increasing the thickness of flat covers could not relieve the stress concentration at the edge of opening. It is recommended that reinforcing element being installed within the region of 2d should be used. When the diameter of openings is larger than 0.5D (d>0.5D), conical or round angle transitions could be employed at connecting location, with which the edge stress decreased remarkably. However, the primary stress plus the secondary stress would be valued by 3[σ].


2021 ◽  
Author(s):  
Rashique Iftekhar Rousseau ◽  
Abdel-Hakim Bouzid ◽  
Zijian Zhao

Abstract The axial stiffnesses of the bolt and clamped members of bolted joints are of great importance when considering their integrity and capacity to withstand external loads and resist relaxation due to creep. There are many techniques to calculate the stiffnesses of the joint elements using finite element (FE) modeling, but most of them are based on the displacement of nodes that are selected arbitrarily; therefore, leading to inaccurate values of joint stiffness. This work suggests a new method to estimate the stiffnesses of the bolt and clamped members using FE analysis and compares the results with the FE methods developed earlier and also with the existing analytical models. A new methodology including an axisymmetric finite element model of the bolted joint is proposed in which the bolts of different sizes ranging from M6 to M36 are considered for the analysis to generalize the proposed approach. The equivalent bolt length that includes the contribution of the thickness of the bolt head and the bolt nominal diameter to the bolt stiffness is carefully investigated. An equivalent bolt length that accounts for the flexibility of the bolt head is proposed in the calculation of the bolt stiffness and a new technique to accurately determine the stiffness of clamped members are detailed.


1990 ◽  
Vol 112 (3) ◽  
pp. 442-449 ◽  
Author(s):  
I. R. Grosse ◽  
L. D. Mitchell

A critical assessment of the current design theory for bolted joints which is based on a linear, one-dimensional stiffness analysis is presented. A detailed nonlinear finite element analysis of a bolted joint conforming to ANSI standards was performed. The finite element results revealed that the joint stiffness is highly dependent on the magnitude of the applied load. The joint stiffness changes continuously from extremely high for small applied loads to the bolt stiffness during large applied loads, contrary to the constant joint stiffness of the linear theory. The linear theory is shown to be inadequate in characterizing the joint stiffness. The significance of the results in terms of the failure of bolted joints is discussed. A number of sensitivity studies were carried out to assess the effect of various parameters on the axial joint stiffness. The results revealed that bending and rotation of the joint members, interfacial friction, and the bolt/nut threading significantly influence the axial stiffness characteristics of the bolted joint. The two-dimensional, axisymmetric finite element model includes bilinear gap elements to model the interfaces. Special orthotropic elements were used to model the bolt/nut thread interaction. A free-body-diagram approach was taken by applying loads to the outer diameter of the joint model which correspond to internal, uniformly distributed line-shear and line-moment loads in the joint. A number of convergence studies were performed to validate the solution.


Author(s):  
A. Fitzgerald (Jerry) Waterland ◽  
David Lay ◽  
Michael Dodge

Why do we certify welders but require no evidence of training or competence from those performing the critical bolted flanged joint assembly of pressure vessels and piping throughout the same industries? To remedy this situation ASME has recently released the first comprehensive standard in ASME PCC-1-2013 Appendix A that establishes uniform criteria, not just for the quality of the bolted joints but for the workers who assemble them. To support this critical training and qualification standard, ASME Training & Development has created a unique blended learning program for pipe fitters and mechanics to become Qualified Bolting Specialists (QBS), per the requirements outlined in PCC-1-2013 Appendix A. The purpose of this technical presentation is to explain the opportunities presented by this new standard and how industry can benefit from a better-trained work force in this critical area of bolted joint assembly. The authors have been integrally involved in the development of both the PCC-1 guideline document, and the ASME qualification program, and can authoritatively answer industry’s questions.


Author(s):  
Raphael Calazans Cardoso ◽  
Brenno Lima Nascimento ◽  
Felipe de Freitas Thompson ◽  
Sandro Griza

The bolted joints sizing procedures shall adequately match the conditions imposed on the joint in service, to ensure high reliability designs. Therefore, this study aims to analyze the load distributions on the bolt when applying external load on bolted joints. Finite element and extensometry analyses as well as analytical calculations were performed in order to compare the magnitude of the joint overall stiffness, with respect to several available theories. The results acquired through the analytical method prescribed in the VDI 2230 standard as well as the finite element and extensometry analyses obtained great accordance. These results indicate that VDI 2230 standard adequately represents the mechanical behavior of the joint and should be used as a guideline for the reliable design of bolted joints subjected to the loading conditions of the present paper.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Xianjie Yang ◽  
Sayed A. Nassar ◽  
Zhijun Wu ◽  
Aidong Meng

The nonlinear plastic deformation behavior of a clamped bolted joint model under a separating service load is investigated using analytical, finite element, and experimental techniques. An elastic-plastic model is used for the bolt material while the joint material remains in the linear elastic range. Both the analytical and finite element analysis (FEA) models investigate the variation in the tension of a preloaded bolt due to a separating service load that acts with an offset from the bolt center. Experimental verification is provided for both the analytical and finite element results on the bolt tension variation, clamp load variation and the clamp load loss caused by the incremental plastic bolt elongation under cyclic separating force.


2011 ◽  
Vol 138-139 ◽  
pp. 74-78
Author(s):  
Yue Qiang Qian ◽  
Fu Jun Liu ◽  
Zhang Wei Ling ◽  
Shuai Kong

In pressure vessels design, WRC107 provides a typical method of local stress analysis to supports and attachments. But influence of the rigidity of attachments on calculation is not considered. For fatigue analysis of round hollow attachment on cylindrical shell, equivalent stresses calculated by WRC107 were compared with those by finite element method. Three attachment thickness configurations, that half, equal, double of the shell thickness were tested. Results show that, in key point Au defined by WRC107 equivalent stress decreases while attachment rigidity increases, and in key point Cu, equivalent stress increases while attachment rigidity increases. When the thickness of attachment equals to that of shell, equivalent stress of WRC107 in Cu comes closest to FEM.


Sign in / Sign up

Export Citation Format

Share Document