Effect of Shear and Torsion on the Plastic Collapse Load of a Pipe Section With a Circumferential Flaw

Author(s):  
Lingyah Yen ◽  
Taha Al-Shawaf ◽  
Dae-Jin Kim

This paper focuses on the effect of shear force and torsion moment on the plastic collapse load for circumferentially flawed pipe sections with small and large diameter-thickness (D/t) ratios. Rigorous elastic-plastic finite element analyses are performed using bilinear kinematic hardening and Von Mises yield criteria. The comparison between the numerical results and predictions by the ASME B&PV Code Section XI Appendix C shows that including the effect of shear and torsion (separate from bending moment) may result in plastic collapse loads varying from those predicted by the ASME Section XI Appendix C.

Author(s):  
Anindya Bhattacharya ◽  
Sachin Bapat ◽  
Hardik Patel ◽  
Shailan Patel

Bends are an integral part of a piping system. Because of the ability to ovalize and warp they offer more flexibility when compared to straight pipes. Piping Code ASME B31.3 [1] provides flexibility factors and stress intensification factors for the pipe bends. Like any other piping component, one of the failure mechanisms of a pipe bend is gross plastic deformation. In this paper, plastic collapse load of pipe bends have been analyzed for various bend parameters (bend parameter = tRbrm2) under internal pressure and in-plane bending moment for various bend angles using both small and large deformation theories. FE code ABAQUS version 6.9EF-1 has been used for the analyses.


Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Phuong H. Hoang ◽  
Bostjan Bezensek

When a crack is detected in a pipe during in-service inspection, the failure estimation method given in the codes such as ASME Boiler and Pressure Vessel Code Section XI non-mandatory Appendix C or JSME S NA-1-2008 Appendix E-8 can be applied to assess the integrity of the pipe. In the current editions of these codes, the failure estimation method is provided for bending moment and pressure. Torsion load is assumed to be relatively small and is not considered in the method. In this paper, finite element analyses are conducted for 24-inch stainless steel pipe with a circumferential surface crack subjected to the combined bending and torsion moments, focusing on large and pure torsion moments. Based on the analysis results, a prediction method for plastic collapse under the combined loading conditions of bending and torsion is proposed for the entire range of torsion moments.


Author(s):  
K. M. Prabhakaran ◽  
S. R. Bhate ◽  
V. Bhasin ◽  
A. K. Ghosh

Piping elbows under bending moment are vulnerable to cracking at crown. The structural integrity assessment requires evaluation of J-integral. The J-integral values for elbows with axial part-through internal crack at crown under in-plane bending moment are limited in open literature. This paper presents the J-integral results of a thick and thin, 90-degree, long radius elbow subjected to in-plane opening bending moment based on number of finite element analyses covering different crack configurations. The non-linear elastic-plastic finite element analyses were performed using WARP3D software. Both geometrical and material nonlinearity were considered in the study. The geometry considered were for Rm/t = 5, and 12 with ratio of crack depth to wall thickness, a/t = 0.15, 0.25, 0.5 and 0.75 and ratio of crack length to crack depth, 2c/a = 6, 8, 10 and 12.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Silambarasan R. ◽  
Veerappan A.R. ◽  
Shanmugam S.

Purpose The purpose of this study is to investigate the effect of structural deformations and bend angle on plastic collapse load of pipe bends under an in-plane closing bending moment (IPCM). A large strain formulation of three-dimensional non-linear finite element analysis was performed using an elastic perfectly plastic material. A unified mathematical solution was proposed to estimate the collapse load of pipe bends subjected to IPCM for the considered range of bend characteristics. Design/methodology/approach ABAQUS was used to create one half of the pipe bend model due to its symmetry on the longitudinal axis. Structural deformations, i.e. ovality (Co) and thinning (Ct) varied from 0% to 20% in 5% steps while the bend angle (ø) varied from 30° to 180° in steps of 30°. Findings The plastic collapse load decreases as the bend angle increase for all pipe bend models. A remarkable effect on the collapse load was observed for bend angles between 30° and 120° beyond which a decline was noticed. Ovality had a significant effect on the collapse load with this effect decreasing as the bend angle increased. The combined effect of thinning and bend angle was minimal for the considered models and the maximum per cent variation in collapse load was 5.76% for small bend angles and bend radius pipe bends and less than 2% for other cases. Originality/value The effect of structural deformations and bend angle on collapse load of pipe bends exposed to IPCM has been not studied in the existing literature.


Author(s):  
Shinji Konosu ◽  
Masato Kano ◽  
Norihiko Mukaimachi ◽  
Shinichiro Kanamaru

General components such as pressure vessels, piping, storage tanks and so on are designed in accordance with the construction codes based on the assumption that there are no flaws in such components. There are, however, numerous instances in which in-service single or multiple volumetric flaws (local thin areas; volumetric flaws) are found in the equipment concerned. Therefore, it is necessary to establish a Fitness for Service (FFS) rule, which is capable of judging these flaws. The procedure for a single flaw or multiple flaws has recently been proposed by Konosu for assessing the flaws in the p–M (pressure-moment) Diagram, which is an easy way to visualize the status of the component with flaws simultaneously subjected to internal pressure, p and external bending moment, M due to earthquake, etc. If the assessment point (Mr, pr) lies inside the p–M line, the component with flaws is judged to be safe. In this paper, numerous experiments and FEAs for a cylinder with external multiple volumetric flaws were conducted under (1) pure internal pressure, (2) pure external bending moment, and (3) subjected simultaneously to both internal pressure and external bending moment, in order to determine the plastic collapse load at volumetric flaws by applying the twice-elastic slope (TES) as recommended by ASME. It has been clarified that the collapse (TES) loads are much the same as those calculated under the proposed p–M line based on the measured yield stress.


Author(s):  
Satoru Izawa ◽  
Masaaki Matsubara ◽  
Kikuo Nezu ◽  
Kenji Sakamoto

This paper is evaluates the effects of load history on the plastic collapse load of stainless steel members with a single-edge notch. It considers, both the tension force due to an internal pressure and the bending moment caused by an earthquake, considered as load cases for a structure. Experimental equipment was specially developed to cope with the indeterminate problems in fracture mechanics. In this experiment, the stress state of a plastic collapse point was assessed using a membrane stress and axial displacement chart as well as a bending stress and deflection angle chart, which is well known as the ligament method. As a result, we successfully developed a new method for assessing plastic collapse under a complex load. We found that a different load history affects the formation of the plastic region and the collapse point position. The effects of load history on the plastic collapse load were not very big.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Shinji Konosu ◽  
Masato Kano ◽  
Norihiko Mukaimachi ◽  
Hiroyuki Komura ◽  
Hiroyuki Takada

This paper is based on work done to establish the validity of a simple engineering approach to assess plastic collapse for a vessel with a local thin area (LTA). The approach is based on a recently developed p-M (internal pressure ratio and external bending moment ratio) diagram, which is an easy way to visualize the status of a vessel with a LTA simultaneously subjected to internal pressure, p and external bending moment, M due to earthquake, etc. If the assessment point (Mr,pr) lies inside the p-M line, the vessel with the LTA is judged to be safe. Numerous experiments and finite element analyses for a cylinder with an external flaw were conducted under (1) pure internal pressure, (2) pure external bending moment, and (3) subjected simultaneously to both internal pressure and external bending moment, in order to determine the plastic initiation load and plastic collapse load by applying the twice-elastic slope (TES) as recommended by ASME. It has been clarified that the collapse (TES) loads are similar to those calculated under the proposed p-M line based on the measured yield stress. The p-M line adopted in the Ibaraki fitness for service (FFS) rule based on the specified minimum yield stress with a safety factor of 1.5 indicates that the safety margin for the plastic initiation loads at LTA is about 1.0–3.0, about 1.5–4.0 for the TES loads at LTA, and 2.5–6.5 for the plastic instability (break) loads.


1988 ◽  
Vol 110 (4) ◽  
pp. 374-386 ◽  
Author(s):  
T. Fujimoto ◽  
T. Soh

The finite element analyses are carried out for the several piping components (D/T ≧ 100) subjected to in-plane or out-of-plane moment. For the stress evaluation of the chemical plant piping systems, ANSI B31.3 is usually applied. But the stress intensification factors and flexibility factors in this code are mainly for a heavy-wall-thickness pipe, so it is necessary to reconsider these factors for a thin-wall-thickness pipe with a large diameter. In our study, several finite element analyses using MSC/NASTRAN program were performed on the pipe bends (elbow or miter bend, 0.01 ≦ h ≦ 0.2) and the unreinforced fabricated tees (50 ≦ D/Tr ≦ 300, 0.5 ≦ d/D ≦ 0.95, 0.25 ≦ Tb/Tr ≦ 0.95), and the empirical formulas for the flexibility factors and the stress indices, due to out-of-plane or in-plane moment, were proposed. Experimental stress analyses for the piping components with D/Tr = 127 were also carried out, and it was confirmed that the results agreed well with the numerical ones.


Author(s):  
Caroline Meek ◽  
Marius Gintalas ◽  
Andrew H. Sherry ◽  
Robert A. Ainsworth

There is little advice in fitness for service procedures for assessing constraint parameters T (elastic) and Q (elastic plastic) for biaxially loaded plates and cylinders. This paper presents the analytical determination of T stresses for biaxially loaded plates and the determination of Q for plates and cylinders using finite element analyses. It demonstrates the extent to which T can be used to conservatively predict Q and how, near collapse, Q can be estimated from the stress field corresponding to plastic collapse, enabling a significant reduction in computing effort. The effect of biaxial loading of plates and cylinders on these parameters is discussed as well as the differences found when comparing the values for plates and cylinders.


Sign in / Sign up

Export Citation Format

Share Document