Seismic Response Analysis of Multiple Supported Piping System Considering Friction Characteristics of Support

Author(s):  
Akira Sone ◽  
Kazumasa Tsuchikawa ◽  
Tatsuya Yamauchi ◽  
Arata Masuda

In this study, a practical method for obtaining the nonlinear seismic maximum response properties of multiple supported piping systems with friction characteristics in industrial plants such as the nuclear power plant and petrochemical plant is presented. In this method, the response reduction effects of friction are effectively considered. The method also facilitates the calculation of maximum nonlinear responses by using those of the linear piping-supporting system. By numerical simulations with a simple 2DOF model, the reduction effect of friction on the maximum acceleration responses of multiple supported piping systems are evaluated in terms of “response reduction factor”. After summarizing the characteristics of the response reduction factor obtained for various system parameters, a practical method for obtained this factor using the maximum linear response of piping system can be introduced. Finally, the maximum response calculated by the proposed method is presented for practical use.

Author(s):  
Tatsuya Yamauchi ◽  
Kazumasa Tsuchikawa ◽  
Atsushi Yokota ◽  
Arata Masuda ◽  
Akira Sone

Seismic response analysis of piping systems with friction characteristics to multiple support excitations is presented. By this analysis, the maximum responses of piping system are calculated and “response reduction factor” due to friction are taken into account by use of a stationary random vibration theory approach. Using a simple analytical SDOF piping system with friction characteristics to two support excitations, This method is supplied to various support cases with two support excitations and friction characteristics and the maximum responses of piping is calculated. From these calculation results, it is clear that the maximum acceleration responses of nonlinear piping systems can be reduced due to the friction effect. Finally, the conventional equation of the response reduction factor and the maximum response calculated by the proposed method are presented for practical use.


Author(s):  
Tatsuya Yamauchi ◽  
Kazumasa Tsuchikawa ◽  
Arata Masuda ◽  
Akira Sone

A load combination method for seismic response calculation of piping systems with friction characteristics to multiple support excitations is presented. This method has an advantage, such that the cross-correlation among support excitations and “response reduction factor” due to friction are taken into account by use of a stationary random vibration theory approach. Using a simple analytical SDOF piping system with friction characteristics to two support excitations, This method is supplied to various correlation cases of two support excitations and friction characteristics and the maximum responses of piping is calculated. From these calculation results, it is clear that the maximum acceleration responses of nonlinear piping systems can also depend on the cross-correlation among support excitations and can be reduced due to the friction effect. Finally, the conventional equation of the response reduction factor and the maximum response calculated by the proposed method are presented for practical use.


1989 ◽  
Vol 111 (1) ◽  
pp. 10-16 ◽  
Author(s):  
K. Suzuki ◽  
A. Sone

A new load combination scheme for seismic response calculation of piping systems subjected to multiple support excitations is presented. This scheme has an advantage, such that the cross-correlation among support excitations are properly taken into account by use of a stationary random vibration approach. The authors also present the idea of generating a “multi-excitation floor response spectrum.” First, using a simple analytical SDOF piping system to two support excitations and a simple Z-shaped piping model for shaking test, the combination law is supplied to various correlation cases of two support excitations and the maximum responses of piping in a fundamental mode is calculated. Second, nonlinear characteristics such as gap and friction appearing between piping itself and supports are specifically investigated. The response effect due to these nonlinearities is evaluated by the results through the shaking test with a piping-support structural model, and the amount of response reduction effect is represented by “a response reduction factor β.”


Author(s):  
Akira Sone ◽  
Tatsuya Yamauchi ◽  
Arata Masuda

A load combination scheme for seismic response calculation of multi-degree-of-freedom (MDOF) piping systems with friction characteristics to multiple support excitations is presented. This scheme has an advantage, such that the “response reduction factor” due to friction is taken into account by use of a stationary random vibration theory approach. Using a simple and analytical 5DOF piping system with friction characteristics to two support excitations, combination law is supplied to various friction characteristics and the maximum responses of piping is calculated. From these calculation results, it is clear that the maximum acceleration responses of piping systems calculated by the proposed scheme are reasonable compared with those by the numerical simulations.


Author(s):  
Akira Sone ◽  
Tomoyuki Matsuda ◽  
Arata Masuda

This study describes a simple method to estimate the maximum response in the seismic response analysis of multi-input nonlinear system. There are many studies on the response analysis of a system having nonlinear properties, such as elasto-plastic characteristic, but they are intended for the one input system because they cannot be applied to multi-input system. On the other hand, a simple method for estimating the multi-input response analysis can also be proposed, which is applied to a linear system, but they cannot be applied to a nonlinear system. However, the importance of seismic design in consideration of both nonlinear and multi-input problems has been increasing in recent years. Therefore, we propose a simple method for estimating the maximum response of multi-input system with elasto-plastic characteristic in the present study.


1979 ◽  
Vol 101 (2) ◽  
pp. 142-148 ◽  
Author(s):  
M. T. A-Moneim ◽  
Y. W. Chang

The ICEPEL Code for coupled hydrodynamic-structural response analysis of piping systems is used to analyze an experiment on the response of flexible piping systems to internal pressure pulses. The piping system consisted of two flexible Nickel-200 pipes connected in series through a 90-deg thick-walled stainless steel elbow. A tailored pressure pulse generated by a calibrated pulse gun is stabilized in a long thick-walled stainless steel pipe leading to the flexible piping system which ended with a heavy blind flange. The analytical results of pressure and circumferential strain histories are discussed and compared against the experimental data obtained by SRI International.


1996 ◽  
Vol 118 (1) ◽  
pp. 109-114 ◽  
Author(s):  
H. O. Soliman ◽  
T. K. Datta

A frequency domain spectral analysis of piping systems with flexible supports is presented for uniformly modulated nonstationary support excitations. The support points are idealized by spring-dashpot arrangements. The equations of motion of the resulting nonclassically damped, multipoint excitation system are written and solved in terms of the absolute displacements of the dynamic DOF. This facilitates a direct computation of the dynamic stresses induced at various cross sections of the pipe segments. The method of analysis provides a quasi-stationary response based on the assumption that the modulating function varies slowly with time; the exact response analysis in frequency domain for such systems with nonstationary support excitation is difficult to determine. Using the method of analysis presented, the response of a piping system is obtained for a set of important parametric variations related to the flexibility, damping, and excitation of the supports.


Author(s):  
Michiya Sakai ◽  
Ryuya Shimazu ◽  
Shinichi Matsuura ◽  
Ichiro Tamura

In the seismic response analysis of piping systems, finite element analysis is performed with analysis method guidelines [1]–[4] established based on benchmark analysis. However, since it takes a great deal of effort to carry out finite element analysis, a simplified method to analyze the seismic response of complex piping systems is required. In this research, we propose a method to reduce an equivalent spring-mass system model with low degrees of freedom, which can take into account the main mode of the complicated piping system. Simplified seismic evaluation is carried out using this spring mass system model with low degrees of freedom, and the accuracy of response evaluation is confirmed by comparison with finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document