Weld Residual Stress Analysis and Axial PWSCC Predictions in a Double Vee Groove Large Diameter Nozzle

Author(s):  
Frederick W. Brust ◽  
E. Punch ◽  
D. J. Shim ◽  
David Rudland ◽  
Howard Rathbun

Flaw indications have been found in some dissimilar metal (DM) nozzle to stainless steel piping welds and reactor pressure vessel heads (RPVH) in pressurized water reactors (PWR) throughout the world. The nozzle welds usually involve welding ferritic (often A508) nozzles to 304/316 stainless steel pipe) using Alloy 182/82 weld metal. The welds may become susceptible to a form of corrosion cracking referred to as primary water stress corrosion cracking (PWSCC). It can occur if the temperature is high enough (usually greater than 300°C) and the water chemistry in the PWR is typical of operating plants. The weld residual stresses (WRS) induced by the welds are a main driver of PWSCC. The purpose of this paper is to determine the weld residual stresses in a double-vee groove welded nozzle and then to model the natural crack growth in the weld. The double vee groove geometry has not been modeled much to date especially in such a large nozzle. This leads to a rather unique weld residual stress pattern which changes as the throat of the double vee is approached. Axial crack growth is modeled using a natural crack growth procedure. This was challenging since the crack shape necked down in the region where the tips of the vee grooves meet making the mesh development during this process challenging. This analysis provides information regarding crack growth evolution versus time. In addition, some comments regarding idealized growth are presented.

Author(s):  
F. W. Brust ◽  
D.-J. Shim ◽  
G. Wilkowski ◽  
D. Rudland

Flaw indications have been found in some dissimilar metal (DM) nozzle to stainless steel piping welds and reactor pressure vessel heads (RPVH) in pressurized water reactors (PWR) throughout the world. The nozzle welds usually involve welding ferritic (often A508) nozzles to 304/316 stainless steel pipe) using Alloy 182/82 weld metal. The welds may become susceptible to a form of corrosion cracking referred to as primary water stress corrosion cracking (PWSCC). It can occur if the temperature is high enough (usually >300C) and the water chemistry in the PWR is typical of operating plants. The weld residual stresses (WRS) induced by the welds are a main driver of PWSCC. Several mechanical mitigation methods to control PWSCC have been developed for use on a nozzle welds in nuclear PWR plants. These methods consist of applying a weld overlay repair (WOR), using a method called mechanical stress improvement process (MSIP), and applying an inlay to the nozzle ID. The purpose of a mitigation method is to reduce the probability that PWSCC will occur in the nozzle joint. The key to assessing the effectiveness of mitigation is to determine the crack growth time to leak with and without the mitigation. Indeed, for WOR and MSIP, the weld residual stresses are often reduced after application while for inlay they are actually increased. However, all approaches reduce crack growth rates if applied properly. Procedures for modeling PWSCC growth tend to vary between organizations performing the analyses. Currently, the prediction of PWSCC crack growth is based on the stress intensity factors at the crack tips. Several methods for evaluating the stress intensity factor for modeling the crack growth through these WRS fields are possible, including using analytical, natural crack growth using finite element methods, and using the finite element alternating method. This paper will summarize the methods used, critique the procedures, and provide some examples for crack growth with and without mitigation. Suggestions for modeling such growth will be provided.


Author(s):  
F. W. Brust ◽  
Tao Zhang ◽  
Do-Jun Shim ◽  
Sureshkumar Kalyanam ◽  
Gery Wilkowski ◽  
...  

Flaw indications have been found in some dissimilar metal nozzle to stainless steel piping welds in pressurized water reactors (PWR) throughout the world. The nozzle welds usually involve welding ferritic (often A508) nozzles to 304/316 stainless steel pipe using Alloy 182/82 weld metal. Due to an unexpected aging issue with the weld metal, the weld becomes susceptible to a form of corrosion cracking referred to as primary water stress corrosion cracking (PWSCC). It can occur if the temperature is high enough (usually >300C) and the water chemistry in the PWR is typical of operating plants. This paper represents one of a series of papers which examine the propensity for cracking in a particular operating PWR in the UK. This paper represents an examination of the weld residual stress distributions which occur in four different size nozzles in the plant. Companion papers in this conference examine crack growth and PWSCC mitigation efforts related to this plant. British Energy (BE) has developed a work program to assess the possible impact of PWSCC on dissimilar metal welds in the primary circuit of the Sizewell ‘B’ pressurized water reactor. This effort has included the design and manufacture of representative PWR safety/relief valve nozzle welds both with and without a full structural weld overlay, multiple residual stress measurements on both mock-ups using the deep hole and incremental deep hole methods, and a number of finite element weld residual stress simulations of both the mock-ups and equivalent plant welds. This work is summarized in companion papers [1–3]. Here, the detailed weld residual stress predictions for these nozzles are summarized. The weld residual stresses in a PWR spray nozzle, safety/relief nozzle, surge nozzle, and finally a steam generator hot-leg nozzle are predicted here using an axis-symmetric computational weld solution process. The residual stresses are documented and these feed into a natural crack growth analysis provided in a companion PVP 2010-25162 paper [1]. The solutions are made using several different constitutive models: kinematic hardening, isotropic hardening, and a mixed hardening model. Discussion will be provided as to the appropriateness of the constitutive model for multi-pass DM weld modeling. In addition, the effect of including or neglecting the post-weld heat treatment process, which typically occurs after the buttering process in a DM weld, is presented. During operation the DM welds in a PWR experience temperatures in excess of 300°C. The coefficient of thermal expansion (CTE) mismatch between the three materials, particularly the higher CTE in the stainless steel, affects the stresses at operating temperature. The K-weld geometry used in the steam generator nozzles in this plant combines with CTE mis-match effects to result in service stresses somewhat different from V-weld groove cases.


Author(s):  
Frederick W. Brust ◽  
Paul M. Scott

There have been incidents recently where cracking has been observed in the bi-metallic welds that join the hot leg to the reactor pressure vessel nozzle. The hot leg pipes are typically large diameter, thick wall pipes. Typically, an inconel weld metal is used to join the ferritic pressure vessel steel to the stainless steel pipe. The cracking, mainly confined to the inconel weld metal, is caused by corrosion mechanisms. Tensile weld residual stresses, in addition to service loads, contribute to PWSCC (Primary Water Stress Corrosion Cracking) crack growth. In addition to the large diameter hot leg pipe, cracking in other piping components of different sizes has been observed. For instance, surge lines and spray line cracking has been observed that has been attributed to this degradation mechanism. Here we present some models which are used to predict the PWSCC behavior in nuclear piping. This includes weld model solutions of bimetal pipe welds along with an example calculation of PWSCC crack growth in a hot leg. Risk based considerations are also discussed.


Author(s):  
Ru Xiong ◽  
Yuxiang Zhao ◽  
Guiliang Liu

This discussion reviews the occurrence of stress corrosion cracking (SCC) of Alloys 182 and 82 weld metals in primary water of pressurized water reactors (PWR) from both operating plants and laboratory experiments. Results from in-service experience show that more than 340 Alloy 182/82 welds have sustained SCC, and Alloy 182 with lower Cr have more failures than Alloy 82. Most of these cases have been attributed to the presence of high residual stresses produced during the manufacture aside from the inherent tendency for Alloy 182/82 to sustain SCC. The affected welds were not subjected to a stress relief heat treatment with adjacent low alloy steel components. Results from laboratory studies indicate that time-to-cracking of Alloy 82 (with Cr up to 18%–22%) was a factor of 4 to 10 longer than that for Alloy 182. SCC depends strongly on surface conditions, surface residual stresses and surface cold work, which are consistent with the results of in-service failures. Improvements in the resistance of advanced weld metals, Alloys 152 and 52, to SCC are discussed.


Author(s):  
S. E. Marlette ◽  
A. Udyawar ◽  
J. Broussard

For several decades the nuclear industry has used structural weld overlays (SWOL) to repair and mitigate cracking within pressurized water reactor (PWR) components such as nozzles, pipes and elbows. There are two known primary mechanisms that have led to cracking within PWR components. One source of cracking has been primary water stress corrosion cracking (PWSCC). Numerous SWOL repairs and mitigations were installed in the early 2000s to address PWSCC in components such as pressurizer nozzles. However, nearly all of the likely candidate components for SWOL repairs have now been addressed in the industry. The other cause for cracking has been by fatigue, which usually results from thermal cycling events such as leakage caused by a faulty valve close to the component. The PWR components of most concern for fatigue cracking are mainly stainless steel. Thus, ASME Section XI Code Case N-504-4 would be a likely basis for SWOL repairs of these components, although this Code Case was originally drafted to address stress corrosion cracking (SCC) in boiling water reactors (BWR). N-504-4 includes the requirements for the SWOL design and subsequent analyses to establish the design life for the overlay based on predicted crack growth after the repair. This paper presents analysis work performed using Code Case N-504-4 to establish the design life of a SWOL repair applied to a boron injection tank (BIT) line nozzle attached to the cold leg of an operating PWR. The overlay was applied to the nozzle to address flaws found within the stainless steel base metal during inservice examination. Analyses were performed to calculate the residual stresses resulting from the original fabrication and the subsequent SWOL repair. In addition, post-SWOL operating stresses were calculated to demonstrate that the overlay does not invalidate the ASME Section III design basis for the nozzle and attached pipe. The operating and residual stresses were also used for input to a fatigue crack growth (FCG) analysis in order to establish the design life of the overlay. Lastly, the weld shrinkage from the application of overlay was evaluated for potential impact on the attached piping, restraints and valves within the BIT line. The combined analyses of the installed SWOL provide a basis for continued operation for the remaining life of the plant.


2013 ◽  
Vol 747-748 ◽  
pp. 723-732 ◽  
Author(s):  
Ru Xiong ◽  
Ying Jie Qiao ◽  
Gui Liang Liu

This discussion reviewed the occurrence of stress corrosion cracking (SCC) of alloys 182 and 82 weld metals in primary water (PWSCC) of pressurized water reactors (PWR) from both operating plants and laboratory experiments. Results from in-service experience showed that more than 340 Alloy 182/82 welds have sustained PWSCC. Most of these cases have been attributed to the presence of high residual stresses produced during the manufacture aside from the inherent tendency for Alloy 182/82 to sustain SCC. The affected welds were not subjected to a stress relief heat treatment with adjacent low alloy steel components. Results from laboratory studies indicated that time-to-cracking of Alloy 82 was a factor of 4 to 10 longer than that for Alloy 182. PWSCC depended strongly on the surface condition, surface residual stresses and surface cold work, which were consistent with the results of in-service failures. Improvements in the resistance of advanced weld metals, Alloys 152 and 52, to PWSCC were discussed.


Author(s):  
Tao Zhang ◽  
F. W. Brust ◽  
Gery Wilkowski

Weld residual stresses in nuclear power plant can lead to cracking concerns caused by stress corrosion. These are large diameter thick wall pipe and nozzles. Many factors can lead to the development of the weld residual stresses and the distributions of the stress through the wall thickness can vary markedly. Hence, understanding the residual stress distribution is important to evaluate the reliability of pipe and nozzle joints with welds. This paper represents an examination of the weld residual stress distributions which occur in various different size nozzles. The detailed weld residual stress predictions for these nozzles are summarized. Many such weld residual stress solutions have been developed by the authors in the last five years. These distributions will be categorized and organized in this paper and general trends for the causes of the distributions will be established. The residual stress field can therefore feed into a crack growth analysis. The solutions are made using several different constitutive models such as kinematic hardening, isotropic hardening, and mixed hardening model. Necessary fabrication procedures such as repair, overlay and post weld heat treatment are also considered. Some general discussions and comments will conclude the paper.


Author(s):  
J. Broussard ◽  
P. Crooker

The US Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) are working cooperatively under a memorandum of understanding to validate welding residual stress predictions in pressurized water reactor primary cooling loop components containing dissimilar metal welds. These stresses are of interest as DM welds in pressurized water reactors are susceptible to primary water stress corrosion cracking (PWSCC) and tensile weld residual stresses are one of the primary drivers of this stress corrosion cracking mechanism. The NRC/EPRI weld residual stress (WRS) program currently consists of four phases, with each phase increasing in complexity from lab size specimens to component mock-ups and ex-plant material. This paper describes the Phase 1 program, which comprised an initial period of learning and research for both FEA methods and measurement techniques using simple welded specimens. The Phase 1 specimens include a number of plate and cylinder geometries, each designed to provide a controlled configuration for maximum repeatability of measurements and modeling. A spectrum of surface and through-wall residual stress measurement techniques have been explored using the Phase 1 specimens, including incremental hole drilling, ring-core, and x-ray diffraction for surface stresses and neutron diffraction, deep-hole drilling, and contour method for through-wall stresses. The measured residual stresses are compared to the predicted stress results from a number of researchers employing a variety of modeling techniques. Comparisons between the various measurement techniques and among the modeling results have allowed for greater insight into the impact of various parameters on predicted versus measured residual stress. This paper will also discuss the technical challenges and lessons learned as part of the DM weld materials residual stress measurements.


Sign in / Sign up

Export Citation Format

Share Document