Fluid-Structure Interaction and Co-Simulation: Analysis of a Beam-Supported Sphere for VIV Application

Author(s):  
Raffaele Ardito ◽  
Federico Perotti ◽  
Simone Mandelli ◽  
Davide Novarina ◽  
Stefano Malavasi

The recent developments in numerical tools and computing resources seem to provide a suitable environment to perform numerical analyses of Fluid-Structure Interaction problems. The Co-Simulation technique, in particular, develops the idea of coupling a CFD software with a structural one in order to simulate complex FSI phenomena with a partitioned approach, stressing the concept of software modularity. In this way, it is possible to adopt software tools at the cutting edge of technology. Nonetheless, several difficulties may arise in the choice of the partitioning scheme and of the algorithmic details for the step-by-step time integration. This paper deals with the application of the Co-Simulation technique to a benchmark case experimentally investigated in previous works: the vortex-induced vibrations (VIV) of a beam supported sphere (that is, a sphere fixed to the end of a slender cantilever beam) in a free surface flow. This problem is challenging although apparently simple and it seems quite absent from literature so far. In this paper, the computational issues are thoroughly investigated and the model is validated by comparison with the experimental data. In this way, a robust framework is created in order to deal with VIV problems.

PAMM ◽  
2004 ◽  
Vol 4 (1) ◽  
pp. 338-339 ◽  
Author(s):  
Andreas Kölke ◽  
Elmar Walhorn ◽  
Björn Hübner ◽  
Dieter Dinkler

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1048 ◽  
Author(s):  
Andrea Luigi Facci ◽  
Giacomo Falcucci ◽  
Antonio Agresta ◽  
Chiara Biscarini ◽  
Elio Jannelli ◽  
...  

In this paper we present a computational model for the fluid structure interaction of a buoyant rigid body immersed in a free surface flow. The presence of a free surface and its interaction with buoyant bodies make the problem very challenging. In fact, with light (compared to the fluid) or very flexible structures, fluid forces generate large displacements or accelerations of the solid and this enhances the artificial added mass effect. Such a problem is relevant in particular in naval and ocean engineering and for wave energy harvesting, where a correct prediction of the hydrodynamic loading exerted by the fluid on buoyant structures is crucial. To this aim, we develop and validate a tightly coupled algorithm that is able to deal with large structural displacement and impulsive acceleration typical, for instance, of water entry problems. The free surface flow is modeled through the volume of fluid model, the finite volume method is utilized is to discretize the flow and solid motion is described by the Newton-Euler equations. Fluid structure interaction is modeled through a Dirichlet-Newmann partitioned approach and tight coupling is achieved by utilizing a fixed-point iterative procedure. As most experimental data available in literature are limited to the first instants after the water impact, for larger hydrodynamic forces, we specifically designed a set of dedicated experiments on the water impact of a buoyant cylinder, to validate the proposed methodology in a more general framework. Finally, to demonstrate that the proposed numerical model could be used for a wide range of engineering problems related to FSI in multiphase flows, we tested the proposed numerical model for the simulation of a floating body.


2014 ◽  
Vol 11 (04) ◽  
pp. 1350101 ◽  
Author(s):  
N. MITSUME ◽  
S. YOSHIMURA ◽  
K. MUROTANI ◽  
T. YAMADA

Fluid–structure interaction analysis involving free surface flow has been investigated using mesh-based methods or mesh-free particle methods. While mesh-based methods have several problems in dealing with the fragmentation of geometry and moving interfaces and with the instability of nonlinear advective terms, mesh-free particle methods can deal with free surface and moving boundary relatively easily. In structural analyses, the finite element method, which is a mesh-based method, has been investigated extensively and can accurately deal with not only elastic problems but also plastic and fracture problems. Thus, the present study proposes a partitioned coupling strategy for fluid–structure interaction problems involving free surfaces and moving boundaries that calculates the fluid domain using the moving particle simulation method and the structure domain using the finite element method. As the first step, we apply a conventional serial staggered algorithm as a weak coupling scheme. In addition, for the verification of the proposed method, the problem of a breaking dam on an elastic wall is calculated, and the results are compared with the results obtained by other methods.


Author(s):  
E. Longatte ◽  
Z. Bendjeddou ◽  
V. Verreman ◽  
M. Souli

In multi-physics numerical computations a good choice of code coupling schemes is required. Several methods are possible like: an explicit synchronous scheme an Euler implicit method and no interpolation on velocity pressure; an explicit asynchonous scheme using a Crank-Nicholson time integration scheme and interpolation on velocity and pressure; an implicit scheme using a fixed iterative method. In the present paper these different schemes are compared for application in fluid structure interaction field. In the first part numerical coupling schemes are presented. Then their capability to ensure energy conservation is discussed according to numerical results obtained in analytical test cases. Finally application of coupling process to fluid structure interaction problems is investigated and results are discussed in terms of added mass and damping induced by a fluid for a structure vibrating in fluid at rest.


2008 ◽  
Vol 124 (4) ◽  
pp. 2574-2574
Author(s):  
Aldo A. Ferri ◽  
Mohammed Kapacee ◽  
Jerry H. Ginsberg ◽  
Marilyn Smith

Sign in / Sign up

Export Citation Format

Share Document