A Statistical-Based Fatigue Crack Initiation Model for Axial Flaws in Zr-Nb Pressure Tubes

Author(s):  
Cheng Liu ◽  
Douglas Scarth ◽  
Alain Douchant

Flaws found during in-service inspection of CANDU Zr-2.5Nb pressure tubes include fuel bundle scratches, debris fretting flaws, fuel bundle bearing pad fretting flaws, mechanical damage flaws and crevice corrosion marks. The CSA Standard N285.8 contains procedures and acceptance criteria for evaluation of the structural integrity of CANDU Zr-2.5Nb pressure tubes containing flaws. One of the requirements is to evaluate the flaws for fatigue crack initiation. There was a need to develop a statistical-based model of fatigue crack initiation at flaws for use in deterministic and probabilistic assessments of Zr-2.5Nb pressure tubes. A number of fatigue crack initiation experiments have been performed on notched specimens from irradiated and unirradiated Zr-2.5Nb pressure tube material with a range of hydrogen equivalent concentrations. These experiments were performed in an air environment and included temperature and load rise time as test parameters. The test data has been used to develop a statistical-based model of fatigue crack initiation at flaws that covers the effects of flaw root radius, load rise time and irradiation. This paper describes the development of the statistical-based model.

2019 ◽  
Vol 10 (6) ◽  
pp. 809-824
Author(s):  
Bharath Kenchappa ◽  
Lokamanya Chikmath ◽  
Bhagavatula Dattaguru

Purpose Lug joints with fasteners play a crucial role in connecting many major components of the aircraft. Most of the failures in the past were credited to the damages initiating and progressing from these types of joints. Ensuring the structural integrity of these fastener joints is a major issue in many engineering structures, especially in aerospace components, which would otherwise lead to fatal failure. The purpose of this paper is to adopting the prognostic approach for analysing these lug joints with fasteners subjected to off-axis loading by estimating the crack initiation and crack growth life of these joints. This data will be useful to estimate the remaining life of these joints at any given stage of operations, which is mandatory in structural health monitoring (SHM). Design/methodology/approach Straight and tapered lug joints are modelled using the finite element method in MSC PATRAN and analysed in MSC NASTRAN. These lug joints are analysed with a push fit fastener. The contact/separation regions at the pin–lug interface are carefully monitored throughout the analysis for various loading conditions. Critical locations in these lug joints are identified through stress analysis. Fatigue crack initiation and fatigue crack growth analysed is carried out at these locations for different load ratios. A computational method is proposed to estimate the cycles to reach crack initiation and cycles at which the crack in the lug joint become critical by integrating several known techniques. Findings Analysis carried out in this paper describes the importance of tapered lug joints, particularly when subjected to non-conventional way of loading, i.e. off-axis loading. There is a partial loss of contact between pin and lug upon pin loading, and this does not change further with monotonically increasing pin load. But during load reversals, there is a change in contact/separation regions which is effectively handled by inequality constraints in the boundary conditions. Crack growth in these lug joints pertains to mixed-mode cracking and is computed through the MVCCI technique. Originality/value Most of the earlier works were carried out on in-plane pin loading along the axis of symmetry of the lug. The current work considers the off-axis pin loading by loading the lug joints with transverse and oblique pin load. The significance of taper angle under such loading condition is brought in this paper. The results obtained in this paper through prognostic approach are of direct relevance to the SHM and damage tolerance design approach where the safety of the structural components is of foremost priority.


2013 ◽  
Vol 768-769 ◽  
pp. 605-612 ◽  
Author(s):  
Majid Farajian ◽  
Thomas Nitschke-Pagel ◽  
Klaus Dilger

In spite of an increased awareness of welding residual stress threat to structural integrity, the extent of its influence on fatigue especially under multiaxial loading is still unclear and is a matter of debate. One important reason for this lack of clarities is that the determination of the initial welding residual stress field in welded structures even at the fatigue crack initiation sites is difficult and requires complementary instruments. Since the fatigue crack initiation in sound welds almost always occurs on the surface, the determination of surface residual stresses could increase the awareness of the extent of their threat to the structural safety. In this paper the development of residual stresses in different TIG-welded tubular specimens out of S355J2H and S690QL steel is studied and compared. The mechanisms of the development of residual stresses based on heat input and cooling rate are discussed. The welding parameters and thus heat inputs are varied and the mechanisms leading to different residual stress states are investigated. X-ray method was used for residual stress state characterization.


Author(s):  
Brahim Nadri ◽  
Robert X. Wang

Steam generating boilers in gas cooled nuclear reactors in the UK operate at high temperatures and some of them have been in service for more than 30 years and are now facing the challenges from long term operation extension demand. The tubular components experience surface metal losses due to exposure to oxidation and corrosive environment and as a result, some tubes suffer from restricted flow which may lead to an increased creep-fatigue crack initiation damage. To maintain or recover boiler heat transfer efficiency, internal chemical cleaning of selected boiler tubes is carried out, which introduces additional metal loss in the tube wall, weakening its load bearing capacity. Some boiler components are subject to high temperature, pressure and mechanical loadings in large number of operating cycles through life, introducing creep in addition to cyclic fatigue damage. In support of an operational safety case and plant long term operation extension requirements, structural integrity assessments have been carried out on a critical boiler component — bifurcation, taking into account tube wall metal loss for extended long term services, including the effects of possible future chemical cleaning operations. This paper presents the finite element analyses and R5 Volume 2/3 assessment work carried out for the structural integrity substantiation of a stainless steel boiler tube bifurcation. The bifurcation is a tubular component subject to significant applied displacement due to long range thermal expansion of the neighbouring components. The initial study following normal industry practice using a decoupled analysis approach showed that the strain ranges obtained would exceed the creep-fatigue crack initiation capacity and plastic ratchetting would occur which would lead to short term, incremental plastic collapse, hence a safety case could not be made. To meet the challenge, the analysis and assessment processes have been examined. A coupled FE analysis approach was used to remove the pessimism associated with the decoupled analysis approach. This approach captures the displacement-controlled nature of the system loads and allows a more realistic assessment. In addition, the plant life has been divided into a number of assessment periods such that the more realistic metal loss appropriate for each period could be used. Furthermore, segregated temperature zones have been considered in the assessment, leading to a significant reduction in the creep-fatigue crack initiation damage and a satisfactory extended long term operation safety case.


Author(s):  
Sheri D. Sheppard ◽  
Michael Strange

Abstract The main objective of this research is to develop a model of fatigue crack initiation and early crack growth in resistance spot welds that is specimen independent. This objective is achieved by examining the stress state around a resistance spot weld. A general expression for the structural stress around the weld is formulated that is dependent only on the loading immediately surrounding the weld. As such, the expression is specimen independent. An additional objective is to explore the feasibility of applying this fatigue crack initiation model to life estimation using structural response data from finite element analysis (FEA). This numerical technique is often used for evaluating structural integrity of assemblies. Limited verification examples show that the structural stress range as calculated from FEA reaction load data is capable of describing fatigue crack initiation and early crack growth in cyclically loaded resistance spot welds.


2017 ◽  
Vol 86 (1) ◽  
pp. 56-58
Author(s):  
Seiichiro TSUTSUMI ◽  
Fincato RICCARDO ◽  
Mitsuru OHATA ◽  
Tomokazu SANO

Sign in / Sign up

Export Citation Format

Share Document