The Case for MACA: The Optimization of Corrosion Allowance

Author(s):  
Jaan Taagepera

Engineers are taught to optimize. In the case of pressure vessel design, one means of optimizing the steel which is used is to increase the rated pressure capacity of the vessel beyond the design needs. This optimized pressure is formally known by the term MAWP or Maximum Allowable Working Pressure. Of historical interest, this concept has existed for over 100 years, with the MAWP formula for cylindrical shells being tracable back to the original edition of the Boiler Code. However, other variables in vessel design can also be optimized. In addition to pressure, consideration can be given to temperature or corrosion allowance. Increasing the temperature has the effect of reducing the basic allowable tensile stress as well as the allowable compressive stress and flange ratings. In the case of some specialty vessels such as reactors with exothermic reactions adding a few degrees to the design temperature may be very beneficial. But virtually all vessels degrade in some manner, most often corrosion but sometimes via erosion or other degradation mechanisms. Significant amounts of time and effort are spent with unnecessary shutdowns, repairs, and / or fitness for service (FFS) evaluations all of which might have been avoided or deferred for years had the vessel originally been optimized for corrosion allowance. The term Maximum Allowable Corrosion Allowance or MACA is used to describe this approach. This paper presents some arguments in favor of optimizing the corrosion allowance of pressure vessels, using a MACA based optimization for the design of new vessels rather than a pressure optimization or MAWP philosophy.

Author(s):  
Nigel R. McKie ◽  
Daniel T. Peters ◽  
Keegan A. Tooley

The majority of oilfield Wellhead and Tree equipment has been designed with guidance from codes API 6A and 17D. However, their design methods are not the most appropriate for the new High Pressure High Temperature (HPHT) applications; equipment rated above 15 ksi (103 MPa) Working Pressure and/or above 350 °F (177 °C). This paper discusses the limitations of established design methods and presents more suitable methods for HPHT applications. FEA is well established as a stress analysis method for use in conventional Pressure Vessel design; however it is not so well established for load bearing interfaces. This leaves a gap in our Design Methods, since load bearing interfaces are intrinsic to Wellhead Equipment Pressure Vessel design. Intrinsic because many of our Pressure Vessels are “capped” by hangers and connectors instead of flanges; if a hanger Load Shoulder fails then the Pressure Vessel above it has failed. Unique to the oilfield are infrequent but extremely high loads. These loads are much higher than the Working Condition and in most cases they stem from field testing and emergency situations. If the established ASME methods are used for these cases certain projects may not be viable.


1998 ◽  
Vol 120 (1) ◽  
pp. 6-11 ◽  
Author(s):  
D. P. Updike ◽  
A. Kalnins

This paper examines the calculated pressure at a tensile plastic instability of a pressure vessel and its relationship to burst test results. It is proposed that the instability pressure be accepted as an upper bound to the pressure at which a vessel bursts, and that a strength reduction factor be used to predict the burst. The paper also presents a suitable mathematical model for the calculation of the instability pressures for thin-walled axisymmetric vessels. The proposition is tested by applying the model to a pressurized diaphragm, four cylindrical shells, and two torispherical heads, for which experimental burst data are available. It is found that the ratio of the test burst pressure to the calculated pressure at the tensile plastic instability, expressed in percent, ranges from 71 to 96 percent. The highest ratio occurs for a pressurized diaphragm with no significant defects. The lowest ratios occur for cylindrical shells with longitudinal welds, suggesting that the presence of the welds had a detrimental effect on the burst strength. These results may be useful when designing a pressure vessel with respect to its ultimate strength.


Author(s):  
Maan Jawad

This paper outlines several procedures for developing allowable compressive stress rules in the creep regime (time dependent regime). The rules are intended for the ASME Boiler and Pressure Vessel codes (Sections I and VIII). The proposed rules extend the methodology presently outlined in Sections I, II-D, and VIII of the ASME code for temperatures below the creep regime into temperatures where creep is a consideration.


Author(s):  
Harsh Kumar Baid ◽  
Donald LaBounty ◽  
Amiya Chatterjee

The allowable compressive stresses in pressure vessels can be calculated either from ASME Section VIII Division 1, Paragraph UG-28 vacuum chart method [2] or Code Case 2286 [1]. Code Case 2286 has been incorporated into ASME Section VIII Division 2, Part 5. For Division 1 vessels, the vacuum chart method is a user-friendly tool for determining allowable compressive stress. In this paper, the authors present the development of allowable compressive stress data based on closed-form solutions of Code Case 2286. These closed-form solutions yield exact allowable compressive stress values which are not influenced by any kind of sensitivity. The development presented in the paper is also user-friendly, similar to the vacuum chart, for the determination of allowable compressive stresses. These designs, based on Code Case 2286, are economical without any compromise in the safety of the pressure vessel. Examples are included to demonstrate the results.


1962 ◽  
Vol 84 (2) ◽  
pp. 197-202
Author(s):  
A. E. Dapprich ◽  
Joseph Marin ◽  
Tu-Lung Weng

This paper develops a theory for the determination of the plastic pressure-deformation relation in a thick-walled cylindrical pressure vessel subjected to internal pressure and made of an anisotropic material. In this theory, large or finite strains are considered and a closed solution is found for the pressure-strain relation based on a modified log-log tensile stress-strain relation. Theory is also developed for predicting the maximum pressure which the vessel can withstand.


1969 ◽  
Vol 11 (2) ◽  
pp. 162-167
Author(s):  
B. B. Miatt ◽  
B. N. Cole

In investigating the elastic interactions between a cylindrical shell and successively added turns of band reinforcement applied under tension, the paper has a twofold purpose. Firstly, it sets out to determine the magnitude of the stress relaxation in the winding after many further turns have been added, and shows that this can be considerable. Secondly, it investigates the extent to which a not uncommon neglect of this relaxation can reduce the safe working pressure of a band-reinforced pressure vessel. While the reduction is found to be relatively minor, it is shown that a simple calculation can provide due correction.


Author(s):  
Erik Garrido ◽  
Euro Casanova

It is a regular practice in the oil industry to modify mechanical equipment to incorporate new technologies and to optimize production. In the case of pressure vessels, it is occasionally required to cut large openings in their walls in order to have access to the interior part of the equipment for executing modifications. This cutting process produces temporary loads, which were obviously not considered in the original mechanical design. Up to now, there is not a general purpose specification for approaching the assessments of stress levels once a large opening in a vertical pressure vessel has been made. Therefore stress distributions around large openings are analyzed on a case-by-case basis without a reference scheme. This work studies the distribution of the von Mises equivalent stresses around a large opening in FCC Regenerators during internal cyclone replacement, which is a frequently required practice for this kind of equipment. A finite element parametric model was developed in ANSYS, and both numerical results and illustrating figures are presented.


Author(s):  
Yian Wang ◽  
Guoshan Xie ◽  
Zheng Zhang ◽  
Xiaolong Qian ◽  
Yufeng Zhou ◽  
...  

Temper embrittlement is a common damage mechanism of pressure vessels in the chemical and petrochemical industry serviced in high temperature, which results in the reduction of roughness due to metallurgical change in some low alloy steels. Pressure vessels that are temper embrittled may be susceptible to brittle fracture under certain operating conditions which cause high stress by thermal gradients, e.g., during start-up and shutdown. 2.25Cr1-Mo steel is widely used to make hydrogenation reactor due to its superior combination of high mechanical strength, good weldability, excellent high temperature hydrogen attack (HTHA) and oxidation-resistance. However, 2.25Cr-1Mo steel is particularly susceptible to temper embrittlement. In this paper, the effect of carbide on temper embrittlement of 2.25Cr-1Mo steel was investigated. Mechanical properties and the ductile-brittle transition temperature (DBTT) of 2.25Cr-1Mo steel were measured by tensile test and impact test. The tests were performed at two positions (base metal and weld metal) and three states (original, step cooling treated and in-service for a hundred thousand hours). The content and distribution of carbides were analyzed by scanning electron microscope (SEM). The content of Cr and Mo elements in carbide was measured by energy dispersive X-ray analysis (EDS). The results showed that the embrittlement could increase the strength and reduce the plasticity. Higher carbide contents appear to be responsible for the higher DBTT. The in-service 2.25Cr-1Mo steel showed the highest DBTT and carbide content, followed by step cooling treated 2.25Cr-1Mo steel, while the as-received 2.25Cr-1Mo steel has the minimum DBTT and carbide content. At the same time, the Cr and Mo contents in carbide increased with the increasing of DBTT. It is well known that the specimen analyzed by SEM is very small in size, sampling SEM specimen is convenient and nondestructive to pressure vessel. Therefore, the relationship between DBTT and the content of carbide offers a feasible nondestructive method for quantitative measuring the temper embrittlement of 2.25Cr-1Mo steel pressure vessel.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 592
Author(s):  
Feng Yue ◽  
Ziyan Wu

The fracture mechanical behaviour of thin-walled structures with cracks is highly significant for structural strength design, safety and reliability analysis, and defect evaluation. In this study, the effects of various factors on the fracture parameters, crack initiation angles and plastic zones of thin-walled cylindrical shells with cracks are investigated. First, based on the J-integral and displacement extrapolation methods, the stress intensity factors of thin-walled cylindrical shells with circumferential cracks and compound cracks are studied using linear elastic fracture mechanics, respectively. Second, based on the theory of maximum circumferential tensile stress of compound cracks, the number of singular elements at a crack tip is varied to determine the node of the element corresponding to the maximum circumferential tensile stress, and the initiation angle for a compound crack is predicted. Third, based on the J-integral theory, the size of the plastic zone and J-integral of a thin-walled cylindrical shell with a circumferential crack are analysed, using elastic-plastic fracture mechanics. The results show that the stress in front of a crack tip does not increase after reaching the yield strength and enters the stage of plastic development, and the predicted initiation angle of an oblique crack mainly depends on its original inclination angle. The conclusions have theoretical and engineering significance for the selection of the fracture criteria and determination of the failure modes of thin-walled structures with cracks.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2095872
Author(s):  
Yang Wei ◽  
Mengqian Zhou ◽  
Kunpeng Zhao ◽  
Kang Zhao ◽  
Guofen Li

Glulam bamboo has been preliminarily explored for use as a structural building material, and its stress–strain model under axial loading has a fundamental role in the analysis of bamboo components. To study the tension and compression behaviour of glulam bamboo, the bamboo scrimber and laminated bamboo as two kinds of typical glulam bamboo materials were tested under axial loading. Their mechanical behaviour and failure modes were investigated. The results showed that the bamboo scrimber and laminated bamboo have similar failure modes. For tensile failure, bamboo fibres were ruptured with sawtooth failure surfaces shown as brittle failure; for compression failure, the two modes of compression are buckling and compression shear failure. The stress–strain relationship curves of the bamboo scrimber and laminated bamboo are also similar. The tensile stress–strain curves showed a linear relationship, and the compressive stress–strain curves can be divided into three stages: elastic, elastoplastic and post-yield. Based on the test results, the stress–strain model was proposed for glulam bamboo, in which a linear equation was used to describe the tensile stress–strain relationship and the Richard–Abbott model was employed to model the compressive stress–strain relationship. A comparison with the experimental results shows that the predicted results are in good agreement with the experimental curves.


Sign in / Sign up

Export Citation Format

Share Document