Risk Based Inspection Methodology for Components Subject to High-Temperature Creep

Author(s):  
Carl E. Jaske ◽  
Panos Topalis ◽  
Wong Sin Loong ◽  
Azura Sharina Md Sidek

Risk-based inspection (RBI) methodologies are widely used by industry to develop effective inspection programs for pressure vessels and piping. The RBI approach use data on equipment design, maintenance, and operation along with inspection history to evaluate both the likelihood and consequences of failure. RBI results provide a basis for selecting inspection methods and establishing inspection intervals and coverage. API RP 580 provides guidance on developing a RBI program for fixed equipment and piping, while API RP 581 provides quantitative procedures for establishing RBI methodology. Appendix J of the first edition (2000) of API RP 581 contained procedures for application to creep damage of furnace tubes. However, the second (2008) and third (2016) did not contain any procedures for application to creep damage of equipment, including furnace tubes. DNV GL undertook a RBI project for a coal-fired power plant in Malaysia that required evaluation of components subject to creep damage. As part of this project, a detailed likelihood of failure (LoF) model for creep was developed. This paper reviews the creep LoF model that was developed and discusses a case study of its application. The LoF is estimated using a limit state function where the resistance is characterized using Larson-Miller parameter creep-rupture expressions for the materials of interest and the load is characterized by the time in service. A mean value first order second moment (MVFOSM) method is employed to numerically compute LoF. Guidelines for including metallurgical replication results in the LoF estimate and for assigning inspection effectiveness for creep damage also are discussed.

Author(s):  
A. P. TEIXEIRA ◽  
C. GUEDES SOARES

A reliability formulation is presented for thermally insulated load bearing plates subjected to the localized heat loading. The limit state function is defined in terms of stresses, which account for the additional in-plane compressive loads that the plate will sustain before collapse. The collapse strength of plates is determined with a non-linear finite element code that accounts for the elasto-plastic behavior and for the changes in material properties with temperature. A first order second moment approach is presented to quantify the uncertainty of the heat loads and to describe the importance of the governing variables in the limit state function. An example of the reliability analysis of a steel plate is provided using a time independent first order method.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Deshun Liu ◽  
Yehui Peng

In this paper, two second-order methods are proposed for reliability analysis. First, general random variables are transformed to standard normal random variables. Then, the limit-state function is additively decomposed into one-dimensional functions, which are then expanded at the mean-value point to second-order terms. The approximated limit-state function becomes the sum of independent variables following noncentral chi-square distributions or normal distributions. The first method computes the probability of failure by the saddle-point approximation. If a saddle-point does not exist, the second method is then used. The second method approximates the limit-state function by a quadratic function with independent variables following normal distributions with the same variances. This treatment leads to a quadratic function that follows a noncentral chi-square distribution. These methods generally produce more accurate reliability approximations than the first-order reliability method (FORM) with 2n + 1 function evaluations, where n is the dimension of the problem. The effectiveness of the proposed methods is demonstrated with three examples, and the proposed methods are compared with the first- and second-order reliability methods (SROMs).


Author(s):  
Xiaoping Du ◽  
Junfu Zhang

The widely used First Order Reliability Method (FORM) is efficient, but may not be accurate for nonlinear limit-state functions. The Second Order Reliability Method (SORM) is more accurate but less efficient. To maintain both high accuracy and efficiency, we propose a new second order reliability analysis method with first order efficiency. The method first performs the FORM and identifies the Most Probable Point (MPP). Then the associated limit-state function is decomposed into additive univariate functions at the MPP. Each univariate function is further approximated as a quadratic function, which is created with the gradient information at the MPP and one more point near the MPP. The cumulant generating function of the approximated limit-state function is then available so that saddlepoint approximation can be easily applied for computing the probability of failure. The accuracy of the new method is comparable to that of the SORM, and its efficiency is in the same order of magnitude as the FORM.


2014 ◽  
Vol 551 ◽  
pp. 648-652
Author(s):  
Xin Zhou Qiao

The two first order reliability methods (FORM) for computing the non-probabilistic reliability index, namely the mean-value method and the design-point method, are investigated. A performance comparison is presented between these two methods. The results show that: (1) the value of the reliability index of the mean-value method depends on the specific form of the limit state function, whereas the value of the reliability index of the design-point one does not;(2) the design-point method should be preferentially used in structural reliability assessment. The conclusions are verified by a numerical example.


Author(s):  
Chi-Hui Chien ◽  
Chun-Hung Chen

As a safety concern to a pressurized system, to monitor the corrosion rate of each pressure vessel in order to make the repair decision at the right time based on the required thickness to withstand the maximum allowable working pressure (MAWP), is important to the plant owner. A plant inspector will normally assess the risk by evaluating the probability of failure of each pressure vessel during service hours with inspection and maintenance planning. Therefore, a scheme of reliability assessment to the pressure vessels should be established. The objective of this study is to discuss the failure probabilities of the pressure vessels in a lubricant unit in order to provide the input information for Risk Based Inspection (RBI) assessments. The reliability assessment of a pressure vessel involves the estimation of the failure pressure and evaluation of the limit state function. Based on the formula for calculating required thickness of a pressure vessel component, and due to the presence of non-linearity in the limit state function and the non-normal distributed variables, the first order second moment method (FOSM) was adopted for carrying out the reliability analysis. The uncertainties of the random variables in the limit state function were modeled by using normal and non-normal probabilistic distributions. As the heat exchanger is an important pressure vessel to a pressurized system, the failure probabilities together with the ranking categories of the heat exchangers in a lubricant unit are chosen as a case study to be discussed and presented in this paper.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Junfu Zhang ◽  
Xiaoping Du

The first-order reliability method (FORM) is efficient but may not be accurate for nonlinear limit-state functions. The second-order reliability method (SORM) is more accurate but less efficient. To maintain both high accuracy and efficiency, we propose a new second-order reliability analysis method with first-order efficiency. The method first performs the FORM to identify the most probable point (MPP). Then, the associated limit-state function is decomposed into additive univariate functions at the MPP. Each univariate function is further approximated by a quadratic function. The cumulant generating function of the approximated limit-state function is then available so that saddlepoint approximation can be easily applied in computing the probability of failure. The accuracy of the new method is comparable to that of the SORM, and its efficiency is in the same order of magnitude as the FORM.


Author(s):  
Daowu Zhou ◽  
Ali Mirzaee-Sisan

A probabilistic engineering critical assessment of embedded flaws in a pipeline was carried out as a case study using the limit state function based on both finite element analysis and the failure assessment diagram. The response surface model was used in determining the finite element analysis based limit state function in order to reduce the number of finite element analysis runs. The first order reliability method and second order reliability method were used to determine the probability of failure. This research work highlights the advantage of using specific limit state function for engineering critical assessment of embedded flaws.


2012 ◽  
Vol 532-533 ◽  
pp. 408-411
Author(s):  
Wei Tao Zhao ◽  
Yi Yang ◽  
Tian Jun Yu

The response surface method was proposed as a collection of statistical and mathematical techniques that are useful for modeling and analyzing a system which is influenced by several input variables. This method gives an explicit approximation of the implicit limit state function of the structure through a number of deterministic structural analyses. However, the position of the experimental points is very important to improve the accuracy of the evaluation of failure probability. In the paper, the experimental points are obtained by using Givens transformation in such way these experimental points nearly close to limit state function. A Numerical example is presented to demonstrate the improved accuracy and computational efficiency of the proposed method compared to the classical response surface method. As seen from the result of the example, the proposed method leads to a better approximation of the limit state function over a large region of the design space, and the number of experimental points using the proposed method is less than that of classical response surface method.


Author(s):  
Hideo Machida ◽  
Hiromasa Chitose ◽  
Tatsuhiro Yamazaki

This paper reports the results of the study on the failure modes and limit loads of piping in nuclear power plants subjected to cyclic seismic loading. By investigating the past fracture tests and earthquake resistance tests, it became clear that dominant failure mode of piping was fatigue, and the effect of ratchet strain was negligible. Until now, the stress generated with the acceleration of an earthquake was classified into the primary stress. However, the relationship between the input acceleration and the seismic response displacement of the pipe observed from earthquake resistance tests is non-linear, and increasing rate of displacement is lower than that of input acceleration in elastic-plastic stress condition. Therefore, the seismic loading can be treated as displacement controlled loading. To evaluate the reliability-based critical acceleration, a limit state function was defined taking the variations in the fatigue strength or some parameters into consideration. By using the limit state function, the reliability was evaluated for the typical piping of boiling water reactor (BWR) plants subjected to cyclic seismic loading, and a partial safety factors were calculated. Based on these results, a fatigue curve corresponding to the target reliability was proposed.


Sign in / Sign up

Export Citation Format

Share Document