The Experimental Work in Support to ATLAS+ Project

Author(s):  
Dominique Moinereau ◽  
Patrick Le Delliou ◽  
Anna Dahl ◽  
Yann Kayser ◽  
Szabolcs Szavai ◽  
...  

The 4-years European project ATLAS+ project was launched in June 2017. Its main objective is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. The transferability of ductile material properties from small scale fracture mechanics specimens to large scale components is one of the topics of the project. A large programme of experimental work is to be conducted in support of the development and validation of advanced tools for structural integrity assessment within the framework of the work-package 1 (WP 1): Design and execution of simulation oriented experiments to validate models at different scales. The experimental work is based on a full set of fracture mechanics experiments conducted on standard specimens and large scale components (several pipes and one mock-up), including a full materials characterization. Three materials are considered: • a ferritic steel 15NiCuMoNb5 (WB 36) • an aged austenitic stainless steel weld • a VVER (eastern PWR) dissimilar metal weld (DMW) The paper presents the WP 1, the experimental programme and summarizes the first results.

Author(s):  
Patrick Le Delliou ◽  
Dominique Moinereau ◽  
Myriam Bourgeois ◽  
Szabolcs Szavai

Abstract The 4-year European project ATLAS+ project was launched in June 2017. Its main objective is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. The transferability of ductile material properties from small scale fracture mechanics specimens to large scale components is one of the topics of the project. A large experimental work is conducted in support to development and validation of advanced tools for structural integrity assessment within the framework of the work-package 1 (WP 1): Design and execution of simulation oriented experiments to validate models at different scales. The experimental work is based on a full set of fracture mechanics experiments conducted on specimens and large scale components (several pipes and one mock-up), including a full materials characterization. Three materials are considered: • a ferritic steel 15NiCuMoNb5 (WB 36) • an aged austenitic stainless steel weld • a VVER dissimilar metal weld (DMW) This paper presents the WP 1, the experimental programme and summarizes the first results. A companion paper [1] presents in more details the experimental programme on the ferritic steel.


Author(s):  
Dominique Moinereau ◽  
Tomas Nicak ◽  
Anna Dahl

Abstract The 4-year European project ATLAS+ (Advanced Structural Integrity Assessment Tools for Safe long Term Operation) was launched in June 2017. One of its objectives is to study the transferability of ductile material properties from small scale specimens to large scale components and validate some advanced tools for structural integrity assessment. The study of properties transferability is based on a wide experimental program — within the framework of work-package 1 (WP 1) — which includes a full set of fracture experiments conducted on conventional fracture specimens and on large scale components (mainly pipes). Three materials are considered in the program: a low-alloy ferritic steel 15NiCuMoNb5 (WB36) typical from feedwater line in German PWR, an aged austenitic stainless steel weld typical (narrow gap) from EPR and a typical VVER austenitic stainless steel dissimilar weld (DMW). Several European organizations are involved in the experimental work: EDF, CEA, Framatome, ARMINES, KIWA, Framatome GmbH, VTT, BZN, MTA-EK, and CIEMAT.


Author(s):  
Stéphane Marie ◽  
Arnaud Blouin ◽  
Tomas Nicak ◽  
Dominique Moinereau ◽  
Anna Dahl ◽  
...  

Abstract The main objective and mission of the ATLAS+ project is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. ATLAS+ WP3 focuses mainly on ductile tearing prediction for large defect in components: Several approaches have been developed to accurately model the ductile tearing process and to take into account phenomena such as the triaxiality effect, or the ability to predict large tearing in industrial components. These advanced models include local approach coupled models or advanced energetic approaches. Unfortunately, the application of these tools is today rather limited to R&D expertise. However, because of the continuous progress in the performance of the calculation tools and accumulated knowledge, in particular by members of ATLAS+, these models can now be considered as relevant for application in the context of engineering assessments. WP3 will therefore: • Illustrate the implementation of these models for industrial applications through the interpretation of large scale mock-ups (with cracks in weld joints for some of them), • Make recommendations for the implementation of the advanced models in engineering assessments, • Correct data from the conventional engineering approach by developing a methodology to produce J-Δa curve suitable case by case, based on local approach models, • Improve the tools, guidance and procedures for undertaking leak-before-break (LBB) assessments of piping components, particularly in relation to representing structural representative fracture toughness J-Resistance curves and the influence of weld residual stresses. To achieve these goals, WP3 is divided into 4 sub-WPs and this paper presents the progress of the work performed in each sub-WP after 24 months of activities.


Author(s):  
Anna Dahl ◽  
Dominique Moinereau ◽  
Patrick Le Delliou ◽  
Willy Vincent

Abstract The 4-years European project ATLAS+ (Advanced Structural Integrity Assessment Tools for Safe long Term Operation) has been launched in June 2017. One of its objectives is to study the transferability of material ductile properties from small scale specimens to large scale components and validate some advanced tools for structural integrity assessment. The study of properties transferability is based on a wide experimental programme which includes a full set of fracture experiments conducted on conventional fracture specimens and large scale components (mainly pipes). Three materials are considered in the programme : a ferritic steel WB36 typical from secondary feed water line in German PWR reactors, an aged stainless steel austenitic weld representative of EPR design and a typical VVER austenitic dissimilar weld (DMW). This paper describes the experimental work conducted on the ferritic steel WB 36 (15NiCuMoNb5) and summarizes the experimental results available after 2 years of work. Numerous mechanical tests have been conducted on a wide panel of fracture mechanics specimens for a full characterization of the ferritic steel: Tensile properties, Hardness, Charpy Energy, pre-cracked Charpy PCC, Master curve on CT and SENT specimens, ductile tearing properties on CT and SENT specimens. In parallel, it is planned to test three 4PB large scale tests on pipings (FP1, FP2 and FP3) at room temperature on the EDF test facility with 3 configurations (shape, size and location) of cracks: through wall crack (TWC), internal and external ½ elliptical cracks. Progress of these large scale experiments is described including first results.


Author(s):  
Arnaud Blouin ◽  
Stéphane Marie ◽  
Tomas Nicak ◽  
Antti Timperi ◽  
Peter Gill

Abstract The main objective and mission of the ATLAS+ project is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. ATLAS+ WP3 focuses mainly on ductile tearing prediction for large defect in piping and associated components: Several approaches have been developed to accurately model the ductile tearing process and to take into account phenomena such as triaxiality effects, or the ability to predict large tearing in industrial components. These advanced models include local approach coupled models or advanced energetic approaches. Unfortunately, the application of these tools is currently rather limited to R&D expertise. However, because of the continuous progress in the performance of calculation tools and accumulated knowledge, in particular by members of the ATLAS+ consortium, these models can now be considered as relevant for application in the context of engineering assessments. WP3 has been planned to: • Illustrate the implementation of these models for industrial applications through the interpretation of large scale mock-ups (with cracks in weld joints for some of them), • Make recommendations for the implementation of the advanced models in engineering assessments, • Correct data from the conventional engineering approach by developing a methodology to produce J-Δa curve suitable case by case, based on local approach models, • Improve the tools, guidance and procedures for undertaking leak-before-break (LBB) assessments of piping components, particularly in relation to representing structural representative fracture toughness J-Resistance curves and the influence of weld residual stresses. To achieve these goals, WP3 is divided into 4 sub-WPs and this paper presents the progress of the work performed in each sub-WP after 36 months of activities.


Author(s):  
Tomas Nicak ◽  
Herbert Schendzielorz ◽  
Elisabeth Keim ◽  
Gottfried Meier ◽  
Dominique Moinereau ◽  
...  

The safety and reliability of all systems has to be maintained throughout the lifetime of a nuclear power plant. Continuous R&D work is needed in targeted areas to meet the challenges of long term operation of existing and new plants designs. The European project STYLE aims to develop and validate advanced methods of structural integrity assessment applicable in the ageing and lifetime management of primary circuit components. There are three large scale mock-up tests in STYLE each of them dedicated to investigate specific effects. This paper presents the work related to Mock-up3, which is dedicated to investigate influence of cladding on the crack initiation and propagation as well as the transferability of material properties from small scale specimens to a large scale component. The performed post-test analyses focus on both the further understanding and interpretation of the Mock-up3 test and on the effect of cladding on structural integrity and LBB behavior of reactor coolant pressure boundary components.


Author(s):  
Sebastian Lindqvist ◽  
Kim Wallin ◽  
Dominique Moinereau ◽  
Mike Smith ◽  
Stéphane Marie ◽  
...  

The main objective and mission of the ATLAS+ project is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. This is achieved by development and validation of: • innovative quantitative methodologies to transfer laboratory material properties to assess the structural integrity of large components, • enhanced treatment of weld residual stresses when subjected to long term operation, • advanced simulation tools based on fracture mechanics methods using physically based mechanistic models, • improved engineering methods to assess components under long term operation taking into account specific operational demands, • integrated probabilistic assessment methods to reveal uncertainties and justify safety margins. Additionally, the objective is to disseminate the findings of the work through special training sessions and links to the NUGENIA association. The project scope of work focuses on piping systems of the reactor coolant pressure boundary components (RCPB) excluding the reactor pressure vessel (RPV). The project is aimed on an experimental proof of concept and validates the developed methodology both at the laboratory scale and the full scale level. The ATLAS+ project contains 4 main technical work packages and one training and dissemination package. These are summarised here.


Author(s):  
Dominique Moinereau ◽  
Malik Ait-Bachir ◽  
Stéphane Chapuliot ◽  
Stéphane Marie ◽  
Clémentine Jacquemoud ◽  
...  

Evaluation of the fracture resistance of nuclear reactor pressure vessel (RPV) regarding the risk of brittle fracture is a key point in the structural integrity assessment of the component (RPV). Such approach is codified in French RSE-M code, based on a very conservative methodology. With respect to long term operation, an improvement of the present methodology is necessary and in progress to reduce this conservatism. One possible significant improvement is the inclusion of the warm pre-stress (WPS) concept in the assessment. After a short description of the WPS concept, the process engaged in France to allow inclusion of WPS in the integrity assessment is presented. In a first step, experimental and numerical studies have been conducted in France by EDF, CEA and AREVA (also including international collaborations and projects) to demonstrate and validate the beneficial effect of WPS on the brittle fracture resistance of RPV steels. A large panel of experimental results and data is now available obtained on small, medium and large scale specimens on representative RPV steels (including highly irradiated RPV materials). These data have been included in a specific WPS experimental database. Main experiments have been interpreted by refined computations, based on elastic plastic analyses and local approach to cleavage fracture. In a second step, a new criterion (ACE criterion) has been proposed by French organizations (AREVA, CEA and EDF) for an easy simplified evaluation of warm pre-stress effect on the brittle fracture resistance of RPV steels. Accuracy and conservatism of the criterion is verified by comparison to experimental data results and numerical analyses. Finally, implementation of the WPS effect in the French RSE-M code (for in service assessment) is in progress, based on the ACE criterion. The present paper summarizes all these steps leading to codification of WPS in RSE-M code.


Author(s):  
Shengjun Yin ◽  
Paul T. Williams ◽  
B. Richard Bass

This paper describes numerical analyses performed to simulate warm pre-stress (WPS) experiments conducted with large-scale cruciform specimens within the Network for Evaluation of Structural Components (NESC-VII) project. NESC-VII is a European cooperative action in support of WPS application in reactor pressure vessel (RPV) integrity assessment. The project aims in evaluation of the influence of WPS when assessing the structural integrity of RPVs. Advanced fracture mechanics models will be developed and performed to validate experiments concerning the effect of different WPS scenarios on RPV components. The Oak Ridge National Laboratory (ORNL), USA contributes to the Work Package-2 (Analyses of WPS experiments) within the NESC-VII network. A series of WPS type experiments on large-scale cruciform specimens have been conducted at CEA Saclay, France, within the framework of NESC VII project. This paper first describes NESC-VII feasibility test analyses conducted at ORNL. Very good agreement was achieved between AREVA NP SAS and ORNL. Further analyses were conducted to evaluate the NESC-VII WPS tests conducted under Load-Cool-Transient-Fracture (LCTF) and Load-Cool-Fracture (LCF) conditions. This objective of this work is to provide a definitive quantification of WPS effects when assessing the structural integrity of reactor pressure vessels. This information will be utilized to further validate, refine, and improve the WPS models that are being used in probabilistic fracture mechanics computer codes now in use by the NRC staff in their effort to develop risk-informed updates to Title 10 of the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G.


Author(s):  
Harry E. Coules

Abstract Structural integrity assessment often requires the interaction of multiple closely-spaced cracks or flaws in a structure to be considered. Although many procedures for structural integrity assessment include rules for determining the significance of flaw interaction, and for re-characterising interacting flaws, these rules can be difficult to validate in a fracture mechanics framework. int_defects is an open-source MATLAB toolbox which uses the Abaqus finite element suite to perform large-scale parametric studies in cracked-body analysis. It is designed to allow developers of assessment codes to check the accuracy of simplified interaction criteria under a wide range of conditions, e.g. for different interacting flaw geometries, material models and loading cases. int_defects can help analysts perform parametric studies to determine linear elastic crack tip stress field parameters, elastic-plastic parameters and plastic limit loads for simple three-dimensional cracked bodies relevant to assessment codes. This article focusses on the validation of int_defects using existing fracture mechanics results. Through a set of validation examples, int_defects is shown to produce accurate results for a very wide range of cases in both linear and non-linear cracked-body analysis. Nevertheless, it is emphasised that users of this software should be conscious of the inherent limitations of LEFM and EPFM theory when applied to real fracture processes, and effects such as constraint loss should be considered when formulating interaction criteria.


Sign in / Sign up

Export Citation Format

Share Document