Advanced Structural Integrity Assessment Tools for Safe Long Term Operation: ATLAS+ Project — Status of the Activities of the WP3 on Modelling in 2020

Author(s):  
Arnaud Blouin ◽  
Stéphane Marie ◽  
Tomas Nicak ◽  
Antti Timperi ◽  
Peter Gill

Abstract The main objective and mission of the ATLAS+ project is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. ATLAS+ WP3 focuses mainly on ductile tearing prediction for large defect in piping and associated components: Several approaches have been developed to accurately model the ductile tearing process and to take into account phenomena such as triaxiality effects, or the ability to predict large tearing in industrial components. These advanced models include local approach coupled models or advanced energetic approaches. Unfortunately, the application of these tools is currently rather limited to R&D expertise. However, because of the continuous progress in the performance of calculation tools and accumulated knowledge, in particular by members of the ATLAS+ consortium, these models can now be considered as relevant for application in the context of engineering assessments. WP3 has been planned to: • Illustrate the implementation of these models for industrial applications through the interpretation of large scale mock-ups (with cracks in weld joints for some of them), • Make recommendations for the implementation of the advanced models in engineering assessments, • Correct data from the conventional engineering approach by developing a methodology to produce J-Δa curve suitable case by case, based on local approach models, • Improve the tools, guidance and procedures for undertaking leak-before-break (LBB) assessments of piping components, particularly in relation to representing structural representative fracture toughness J-Resistance curves and the influence of weld residual stresses. To achieve these goals, WP3 is divided into 4 sub-WPs and this paper presents the progress of the work performed in each sub-WP after 36 months of activities.

Author(s):  
Stéphane Marie ◽  
Arnaud Blouin ◽  
Tomas Nicak ◽  
Dominique Moinereau ◽  
Anna Dahl ◽  
...  

Abstract The main objective and mission of the ATLAS+ project is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. ATLAS+ WP3 focuses mainly on ductile tearing prediction for large defect in components: Several approaches have been developed to accurately model the ductile tearing process and to take into account phenomena such as the triaxiality effect, or the ability to predict large tearing in industrial components. These advanced models include local approach coupled models or advanced energetic approaches. Unfortunately, the application of these tools is today rather limited to R&D expertise. However, because of the continuous progress in the performance of the calculation tools and accumulated knowledge, in particular by members of ATLAS+, these models can now be considered as relevant for application in the context of engineering assessments. WP3 will therefore: • Illustrate the implementation of these models for industrial applications through the interpretation of large scale mock-ups (with cracks in weld joints for some of them), • Make recommendations for the implementation of the advanced models in engineering assessments, • Correct data from the conventional engineering approach by developing a methodology to produce J-Δa curve suitable case by case, based on local approach models, • Improve the tools, guidance and procedures for undertaking leak-before-break (LBB) assessments of piping components, particularly in relation to representing structural representative fracture toughness J-Resistance curves and the influence of weld residual stresses. To achieve these goals, WP3 is divided into 4 sub-WPs and this paper presents the progress of the work performed in each sub-WP after 24 months of activities.


Author(s):  
Dominique Moinereau ◽  
Malik Ait-Bachir ◽  
Stéphane Chapuliot ◽  
Stéphane Marie ◽  
Clémentine Jacquemoud ◽  
...  

Evaluation of the fracture resistance of nuclear reactor pressure vessel (RPV) regarding the risk of brittle fracture is a key point in the structural integrity assessment of the component (RPV). Such approach is codified in French RSE-M code, based on a very conservative methodology. With respect to long term operation, an improvement of the present methodology is necessary and in progress to reduce this conservatism. One possible significant improvement is the inclusion of the warm pre-stress (WPS) concept in the assessment. After a short description of the WPS concept, the process engaged in France to allow inclusion of WPS in the integrity assessment is presented. In a first step, experimental and numerical studies have been conducted in France by EDF, CEA and AREVA (also including international collaborations and projects) to demonstrate and validate the beneficial effect of WPS on the brittle fracture resistance of RPV steels. A large panel of experimental results and data is now available obtained on small, medium and large scale specimens on representative RPV steels (including highly irradiated RPV materials). These data have been included in a specific WPS experimental database. Main experiments have been interpreted by refined computations, based on elastic plastic analyses and local approach to cleavage fracture. In a second step, a new criterion (ACE criterion) has been proposed by French organizations (AREVA, CEA and EDF) for an easy simplified evaluation of warm pre-stress effect on the brittle fracture resistance of RPV steels. Accuracy and conservatism of the criterion is verified by comparison to experimental data results and numerical analyses. Finally, implementation of the WPS effect in the French RSE-M code (for in service assessment) is in progress, based on the ACE criterion. The present paper summarizes all these steps leading to codification of WPS in RSE-M code.


Author(s):  
Dominique Moinereau ◽  
Patrick Le Delliou ◽  
Anna Dahl ◽  
Yann Kayser ◽  
Szabolcs Szavai ◽  
...  

The 4-years European project ATLAS+ project was launched in June 2017. Its main objective is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. The transferability of ductile material properties from small scale fracture mechanics specimens to large scale components is one of the topics of the project. A large programme of experimental work is to be conducted in support of the development and validation of advanced tools for structural integrity assessment within the framework of the work-package 1 (WP 1): Design and execution of simulation oriented experiments to validate models at different scales. The experimental work is based on a full set of fracture mechanics experiments conducted on standard specimens and large scale components (several pipes and one mock-up), including a full materials characterization. Three materials are considered: • a ferritic steel 15NiCuMoNb5 (WB 36) • an aged austenitic stainless steel weld • a VVER (eastern PWR) dissimilar metal weld (DMW) The paper presents the WP 1, the experimental programme and summarizes the first results.


Author(s):  
Anna Dahl ◽  
Dominique Moinereau ◽  
Patrick Le Delliou ◽  
Willy Vincent

Abstract The 4-years European project ATLAS+ (Advanced Structural Integrity Assessment Tools for Safe long Term Operation) has been launched in June 2017. One of its objectives is to study the transferability of material ductile properties from small scale specimens to large scale components and validate some advanced tools for structural integrity assessment. The study of properties transferability is based on a wide experimental programme which includes a full set of fracture experiments conducted on conventional fracture specimens and large scale components (mainly pipes). Three materials are considered in the programme : a ferritic steel WB36 typical from secondary feed water line in German PWR reactors, an aged stainless steel austenitic weld representative of EPR design and a typical VVER austenitic dissimilar weld (DMW). This paper describes the experimental work conducted on the ferritic steel WB 36 (15NiCuMoNb5) and summarizes the experimental results available after 2 years of work. Numerous mechanical tests have been conducted on a wide panel of fracture mechanics specimens for a full characterization of the ferritic steel: Tensile properties, Hardness, Charpy Energy, pre-cracked Charpy PCC, Master curve on CT and SENT specimens, ductile tearing properties on CT and SENT specimens. In parallel, it is planned to test three 4PB large scale tests on pipings (FP1, FP2 and FP3) at room temperature on the EDF test facility with 3 configurations (shape, size and location) of cracks: through wall crack (TWC), internal and external ½ elliptical cracks. Progress of these large scale experiments is described including first results.


Author(s):  
Kiminobu Hojo ◽  
Takatoshi Hirota ◽  
Naoki Ogawa ◽  
Satoshi Kumagai

Abstract The main objective and mission of the European project ATLAS+ (Advanced Structural Integrity Assessment Tools for Safe Long Term Operation) are to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. This project includes the development and validation of advanced simulation tools based on fracture mechanics methods using physically based mechanistic models. In the Work Package 3 (WP3), benchmark calculations using different available models are conducted to investigate the accuracy and the capability of the different models for ductile crack growth of different constraint condition, such as laboratory specimens and piping structure, which were tested in the Work Package 1 (WP 1). The authors joined the WP3 activity and investigated the effect of the parameters of the GTN (Gurson-Tvergaard-Needleman) model on the fracture behavior of the specimens. In this paper, the parameters of the GTN model were calibrated to simulate the fracture behavior of CT specimens, notched tensile (NT) specimens and single edge notched tensile (SENT) specimens of ferritic pipe material and the applicability of the GTN model. The adjusted parameters by the CT specimen predicted the fracture behavior of the SENT specimens, but did not those of the NT specimens. The adjusted parameters by the CT specimens were applied to the piping structure mock-up and they predicted the maximum load in high accuracy.


Author(s):  
Sebastian Lindqvist ◽  
Kim Wallin ◽  
Dominique Moinereau ◽  
Mike Smith ◽  
Stéphane Marie ◽  
...  

The main objective and mission of the ATLAS+ project is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. This is achieved by development and validation of: • innovative quantitative methodologies to transfer laboratory material properties to assess the structural integrity of large components, • enhanced treatment of weld residual stresses when subjected to long term operation, • advanced simulation tools based on fracture mechanics methods using physically based mechanistic models, • improved engineering methods to assess components under long term operation taking into account specific operational demands, • integrated probabilistic assessment methods to reveal uncertainties and justify safety margins. Additionally, the objective is to disseminate the findings of the work through special training sessions and links to the NUGENIA association. The project scope of work focuses on piping systems of the reactor coolant pressure boundary components (RCPB) excluding the reactor pressure vessel (RPV). The project is aimed on an experimental proof of concept and validates the developed methodology both at the laboratory scale and the full scale level. The ATLAS+ project contains 4 main technical work packages and one training and dissemination package. These are summarised here.


Author(s):  
Tomas Nicak ◽  
Herbert Schendzielorz ◽  
Elisabeth Keim ◽  
Gottfried Meier ◽  
Dominique Moinereau ◽  
...  

The safety and reliability of all systems has to be maintained throughout the lifetime of a nuclear power plant. Continuous R&D work is needed in targeted areas to meet the challenges of long term operation of existing and new plants designs. The European project STYLE aims to develop and validate advanced methods of structural integrity assessment applicable in the ageing and lifetime management of primary circuit components. There are three large scale mock-up tests in STYLE each of them dedicated to investigate specific effects. This paper presents the work related to Mock-up3, which is dedicated to investigate influence of cladding on the crack initiation and propagation as well as the transferability of material properties from small scale specimens to a large scale component. The performed post-test analyses focus on both the further understanding and interpretation of the Mock-up3 test and on the effect of cladding on structural integrity and LBB behavior of reactor coolant pressure boundary components.


Author(s):  
Dominique Moinereau ◽  
Tomas Nicak ◽  
Anna Dahl

Abstract The 4-year European project ATLAS+ (Advanced Structural Integrity Assessment Tools for Safe long Term Operation) was launched in June 2017. One of its objectives is to study the transferability of ductile material properties from small scale specimens to large scale components and validate some advanced tools for structural integrity assessment. The study of properties transferability is based on a wide experimental program — within the framework of work-package 1 (WP 1) — which includes a full set of fracture experiments conducted on conventional fracture specimens and on large scale components (mainly pipes). Three materials are considered in the program: a low-alloy ferritic steel 15NiCuMoNb5 (WB36) typical from feedwater line in German PWR, an aged austenitic stainless steel weld typical (narrow gap) from EPR and a typical VVER austenitic stainless steel dissimilar weld (DMW). Several European organizations are involved in the experimental work: EDF, CEA, Framatome, ARMINES, KIWA, Framatome GmbH, VTT, BZN, MTA-EK, and CIEMAT.


Author(s):  
Tomas Nicak ◽  
Elisabeth Keim

The purpose of this paper is to introduce a new EUROATOM project focusing on the structural integrity assessment of reactor coolant pressure boundary components (RCPB) relevant to ageing and life time management. The project started in January 2010 and will last 4 years. The project is coordinated by AREVA NP GmbH with 20 partner organizations from Europe, one collaborator from USA and one collaborator from Russia: AEKI, Hungary; AREVA NP GmbH, Germany (coordination, WP2 leader); AREVA NP SAS, France; Bay Zoltan, Hungary; British Energy Generation Ltd., UK (WP7 leader); CEA, France (WP1 leader); EDF, France; IdS, France; INR, Romania; IWM, Germany; JRC, Netherlands (WP4 leader); NRI, Czech Republik; NRG, Netherlands; SCK-CEN, Belgium; Serco Assurance Technical Services, UK (WP3 and WP5 leader); University of Bristol, UK; University of Manchester, UK; Technatom, Spain; Vattenfall, Sweden (WP6 leader); VTT, Finland. Within STYLE (Structural integrity for lifetime management – non-RPV components) realistic failure models for some of the key components will be identified. The range of assessment tools considered will include those for assessment of component failure by advanced fracture mechanics analyses validated on small and large scale experiments, quantification of weld residual stresses by numerical analysis and by measurements, stress corrosion crack initiation/ growth effects and assessment of RCPB components (excluding the reactor pressure vessel) under dynamic and seismic loading. Based on theoretical and experimental results, performance assessment and further development of simplified engineering assessment methods (EAM) will be carried out considering both deterministic and probabilistic approaches. Integrity assessment case studies and large scale demonstration experiments will be performed on Mock-ups of safety-relevant components. These will include a repair weld in an aged butt-welded austenitic pipe, a dissimilar narrow gap TIG weld (following the EPR design) and a cladded ferritic pipe. Moreover experiments on specimens and feature test pieces will be carried out to support the large scale Mock-up analyses. The end product of the project (“STYLE TOOLS”) will comprise best practice guidelines on the use of advanced tools, on improvement and qualification of EAM as a part of European Leak-before-break (LBB) procedures and on life time management of the integrity of RCPB components in European nuclear power plants. The project will interact with the European Network of Excellence NULIFE.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Christopher Gradwohl ◽  
Vesna Dimitrievska ◽  
Federico Pittino ◽  
Wolfgang Muehleisen ◽  
András Montvay ◽  
...  

Photovoltaic (PV) technology allows large-scale investments in a renewable power-generating system at a competitive levelized cost of electricity (LCOE) and with a low environmental impact. Large-scale PV installations operate in a highly competitive market environment where even small performance losses have a high impact on profit margins. Therefore, operation at maximum performance is the key for long-term profitability. This can be achieved by advanced performance monitoring and instant or gradual failure detection methodologies. We present in this paper a combined approach on model-based fault detection by means of physical and statistical models and failure diagnosis based on physics of failure. Both approaches contribute to optimized PV plant operation and maintenance based on typically available supervisory control and data acquisition (SCADA) data. The failure detection and diagnosis capabilities were demonstrated in a case study based on six years of SCADA data from a PV plant in Slovenia. In this case study, underperforming values of the inverters of the PV plant were reliably detected and possible root causes were identified. Our work has led us to conclude that the combined approach can contribute to an efficient and long-term operation of photovoltaic power plants with a maximum energy yield and can be applied to the monitoring of photovoltaic plants.


Sign in / Sign up

Export Citation Format

Share Document