Validation of a Finite Element Toolbox for Studying Flaw Interaction

Author(s):  
Harry E. Coules

Abstract Structural integrity assessment often requires the interaction of multiple closely-spaced cracks or flaws in a structure to be considered. Although many procedures for structural integrity assessment include rules for determining the significance of flaw interaction, and for re-characterising interacting flaws, these rules can be difficult to validate in a fracture mechanics framework. int_defects is an open-source MATLAB toolbox which uses the Abaqus finite element suite to perform large-scale parametric studies in cracked-body analysis. It is designed to allow developers of assessment codes to check the accuracy of simplified interaction criteria under a wide range of conditions, e.g. for different interacting flaw geometries, material models and loading cases. int_defects can help analysts perform parametric studies to determine linear elastic crack tip stress field parameters, elastic-plastic parameters and plastic limit loads for simple three-dimensional cracked bodies relevant to assessment codes. This article focusses on the validation of int_defects using existing fracture mechanics results. Through a set of validation examples, int_defects is shown to produce accurate results for a very wide range of cases in both linear and non-linear cracked-body analysis. Nevertheless, it is emphasised that users of this software should be conscious of the inherent limitations of LEFM and EPFM theory when applied to real fracture processes, and effects such as constraint loss should be considered when formulating interaction criteria.

2010 ◽  
Vol 78 (1) ◽  
Author(s):  
M. Chekchaki ◽  
V. Lazarus ◽  
J. Frelat

The mechanical system considered is a bilayer cantilever plate. The substrate and the film are linear elastic. The film is subjected to isotropic uniform prestresses due for instance to volume variation associated with cooling, heating, or drying. This loading yields deflection of the plate. We recall Stoney’s analytical formula linking the total mechanical stresses to this deflection. We also derive a relationship between the prestresses and the deflection. We relax Stoney’s assumption of very thin films. The analytical formulas are derived by assuming that the stress and curvature states are uniform and biaxial. To quantify the validity of these assumptions, finite element calculations of the three-dimensional elasticity problem are performed for a wide range of plate geometries, Young’s and Poisson’s moduli. One purpose is to help any user of the formulas to estimate their accuracy. In particular, we show that for very thin films, both formulas written either on the total mechanical stresses or on the prestresses, are equivalent and accurate. The error associated with the misfit between our theorical study and numerical results are also presented. For thicker films, the observed deflection is satisfactorily reproduced by the expression involving the prestresses and not the total mechanical stresses.


Author(s):  
Shengjun Yin ◽  
Paul T. Williams ◽  
B. Richard Bass

This paper describes numerical analyses performed to simulate warm pre-stress (WPS) experiments conducted with large-scale cruciform specimens within the Network for Evaluation of Structural Components (NESC-VII) project. NESC-VII is a European cooperative action in support of WPS application in reactor pressure vessel (RPV) integrity assessment. The project aims in evaluation of the influence of WPS when assessing the structural integrity of RPVs. Advanced fracture mechanics models will be developed and performed to validate experiments concerning the effect of different WPS scenarios on RPV components. The Oak Ridge National Laboratory (ORNL), USA contributes to the Work Package-2 (Analyses of WPS experiments) within the NESC-VII network. A series of WPS type experiments on large-scale cruciform specimens have been conducted at CEA Saclay, France, within the framework of NESC VII project. This paper first describes NESC-VII feasibility test analyses conducted at ORNL. Very good agreement was achieved between AREVA NP SAS and ORNL. Further analyses were conducted to evaluate the NESC-VII WPS tests conducted under Load-Cool-Transient-Fracture (LCTF) and Load-Cool-Fracture (LCF) conditions. This objective of this work is to provide a definitive quantification of WPS effects when assessing the structural integrity of reactor pressure vessels. This information will be utilized to further validate, refine, and improve the WPS models that are being used in probabilistic fracture mechanics computer codes now in use by the NRC staff in their effort to develop risk-informed updates to Title 10 of the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G.


Author(s):  
Dominique Moinereau ◽  
Patrick Le Delliou ◽  
Anna Dahl ◽  
Yann Kayser ◽  
Szabolcs Szavai ◽  
...  

The 4-years European project ATLAS+ project was launched in June 2017. Its main objective is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. The transferability of ductile material properties from small scale fracture mechanics specimens to large scale components is one of the topics of the project. A large programme of experimental work is to be conducted in support of the development and validation of advanced tools for structural integrity assessment within the framework of the work-package 1 (WP 1): Design and execution of simulation oriented experiments to validate models at different scales. The experimental work is based on a full set of fracture mechanics experiments conducted on standard specimens and large scale components (several pipes and one mock-up), including a full materials characterization. Three materials are considered: • a ferritic steel 15NiCuMoNb5 (WB 36) • an aged austenitic stainless steel weld • a VVER (eastern PWR) dissimilar metal weld (DMW) The paper presents the WP 1, the experimental programme and summarizes the first results.


2006 ◽  
Vol 321-323 ◽  
pp. 724-728
Author(s):  
Nam Su Huh ◽  
Yoon Suk Chang ◽  
Young Jin Kim

The present paper provides plastic limit load solutions for axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly plastic behavior. As a loading condition, both single and combined loadings are considered. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be valuable information for structural integrity assessment of cracked pipes.


Author(s):  
Kaworu Yodo ◽  
Hiroshi Kawai ◽  
Hiroshi Okada ◽  
Masao Ogino ◽  
Ryuji Shioya

Fracture mechanics analysis using the finite element method has been one of the key methodologies to evaluate structural integrity for aging infrastructures such as aircraft, ship, power plants, etc. However, three-dimensional crack analyses for structures with highly complex three-dimensional shapes have not widely been used, because of many technical difficulties such as the lack of enough computational power. The authors have been developing a fracture mechanics analysis system that can deal with arbitrary shaped cracks in three-dimensional structures. The system consists of mesh generation software, a finite element analysis program and a fracture mechanics module. In our system, a Virtual Crack Closure-Integral Method (VCCM) for the quadratic tetrahedral finite elements is adopted to evaluate the stress intensity factors. This system can perform the three-dimensional fracture analyses. Fatigue and SCC crack propagation analyses with more than one cracks of arbitrary complicated shapes and orientations. The rate and direction of crack propagation are predicted by using appropriate formulae based on the stress intensity factors. When the fracture mechanics analysis system is applied to the complex shaped aging structures with the cracks which are modeled explicitly, the size of finite element analysis tends to be very large. Therefore, a large scale parallel structural analysis code is required. We also have been developing an open-source CAE system, ADVENTURE. It is based on the hierarchical domain decomposition method (HDDM) with the balancing domain decomposition (BDD) pre-conditioner. A general-purpose parallel structural analysis solver, ADVENTURE_Solid is one of the solver modules of the ADVENTURE system. In this paper, we combined VCCM for the tetrahedral finite element with ADVENTURE system and large-scale fracture analyses are fully automated. They are performed using the massively parallel super computer ES2 (Earth Simulator 2) which is owned and run by JAMSTEC (Japan Agency for Marine-Earth Science and Technology).


Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

Three-dimensional elastic-plastic finite element analysis (FEA) is performed in this paper to simulate the complicated stresses and deformation of wrinklebends in a pipeline from its bending formation to operation under cyclic loading. Three plastic hardening models (isotropic, kinematic and combined isotropic/kinematic) are discussed and used in FEA of wrinklebend response that considers strain hardening and Bauschinger effects. The FEA simulation is carried out first for an elbow held at constant pressure while subject to cyclic bending, which serves as a benchmark case. The results show that the three hardening models lead to very different outcomes. Comparable FEA simulations are then developed for wrinklebends under cyclic pressure. Detailed parametric analysis is considered, including finite-element type, element sensitivity, computation time, and material input data. Based on those results viable nonlinear FEA model is developed as the basis to quantify wrinklebend response under service-like conditions. Based on the FEA results, fatigue damage is quantified using the Smith, Watson and Topper (SWT) parameter, and thereafter a damage criterion is proposed to predict the fatigue life of a wrinklebend under the pressure cycles of 72%–10% of SMYS for typical X42 pipeline steel. The results show that the wrinkle aspect ratio H/L is a key parameter to control the service life of a wrinklebend.


1991 ◽  
Vol 44 (10) ◽  
pp. 447-461 ◽  
Author(s):  
Leslie Banks-Sills

Use of the finite element method to treat two and three-dimensional linear elastic fracture mechanics problems is becoming common place. In general, the behavior of the displacement field in ordinary elements is at most quadratic or cubic, so that the stress field is at most linear or quadratic. On the other hand, the stresses in the neighborhood of a crack tip in a linear elastic material have been shown to be square root singular. Hence, the problem begins by properly modeling the stresses in the region adjacent to the crack tip with finite elements. To this end, quarter-point, singular, isoparametric elements may be employed; these will be discussed in detail. After that difficulty has been overcome, the stress intensity factor must be extracted from either the stress or displacement field or by an energy based method. Three methods are described here: displacement extrapolation, the stiffness derivative and the area and volume J-integrals. Special attention will be given to the virtual crack extension which is employed by the latter two methods. A methodology for calculating stress intensity factors in two and three-dimensional bodies will be recommended.


1989 ◽  
Vol 111 (3) ◽  
pp. 170-176 ◽  
Author(s):  
J. C. P. Kam ◽  
D. A. Topp ◽  
W. D. Dover

Evaluation of the structural integrity of offshore structures requires information on the reliability of nondestructive testing, the accuracy of fatigue crack growth modeling and other data. The University College London Underwater NDE Centre has been set up to provide information on the effectiveness and reliability of different nondestructive testing methods. To achieve this aim, a large library of cracked specimens will be assembled. In the preliminary phase of producing this library, a series of large-scale welded tubular joints were fatigue tested and the crack growth was fully monitored with the ACPD technique. This paper will describe briefly the background to the crack library and present the data obtained from fatigue tests. It will also describe a new model for fatigue crack growth prediction in tubular joints using fracture mechanics. This model allows the prediction of the size effect noted previously in the stress/life curves for tubular joints.


Author(s):  
Sutham Arun ◽  
Andrew H. Sherry ◽  
Mike C. Smith ◽  
Mohammad Sheikh

This paper presents the results of a structural integrity assessment of a large-scale test undertaken as part of the EU programme STYLE on a repair welded pipe containing a circumferential through-thickness crack. The pipe was manufactured from two Esshete 1250 stainless steel pipes joined by a girth weld containing a deep repair. A through-thickness circumferential pre-crack was introduced to the centre of the repair prior to testing in four-point bend. The assessment used a finite element model created in Abaqus, with the weld residual stress introduced by an iterative technique. Linear elastic fracture mechanics was used to evaluate the stress intensity factor KI for the defect and elastic-plastic analyses were performed to characterise the crack driving force J along the crack front. The predicted crack mouth opening displacement as a function of load was compared with the test results and the derived variation in J used to predict crack initiation and growth. The results predicted the global behaviour of the test to within approximately 7% at final load, and the position of maximum crack growth. However, the final extent of crack extension is under-predicted. Reasons for this underprediction are suggested.


Author(s):  
Paul T. Williams ◽  
Shengjun Yin ◽  
Hilda B. Klasky ◽  
B. Richard Bass

Oak Ridge National Laboratory (ORNL) is conducting a series of numerical analyses to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management – non-RPV Components (STYLE). STYLE is a European cooperative effort to assess the structural integrity of (non-reactor pressure vessel) reactor coolant pressure boundary components relevant to ageing and life-time management and to integrate the knowledge created in the project into mainstream nuclear industry assessment codes. ORNL contributes “work-in-kind” support to STYLE Work Package 2 (Numerical Analysis/Advanced Tools) and Work Package 3 (Engineering Assessment Methods/LBB Analyses). This paper summarizes the current status of ORNL analyses of the STYLE Mock-Up3 large-scale experiment to simulate and evaluate crack growth in a cladded ferritic pipe. The analyses are being performed in two parts. In the first part, advanced fracture mechanics models are being developed and performed to evaluate several experiment designs taking into account the capabilities of the test facility while satisfying the test objectives. Then these advanced fracture mechanics models will be utilized to simulate the crack growth in the large scale mock-up test. For the second part, the recently developed ORNL SIAM-PFM open-source, cross-platform, probabilistic computational tool will be used to generate an alternative assessment for comparison with the advanced fracture mechanics model results. The SIAM-PFM probabilistic analysis of the Mock-Up3 experiment will utilize fracture modules that are installed into a general probabilistic framework. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those results generated using the deterministic 3D nonlinear finite-element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finite-element solutions.


Sign in / Sign up

Export Citation Format

Share Document