Further Improvements to ASME Section XI Code Case N-806 in a Proposed Second Revision

Author(s):  
Robert O. McGill ◽  
George A. Antaki ◽  
Mark A. Moenssens ◽  
Douglas A. Scarth

Abstract ASME Section XI Code Case N-806, for evaluation of metal loss in Class 2 and 3 metallic piping buried in a backfilled trench, was first published in 2012. This Code Case has been prepared by the ASME Section XI Task Group on Evaluation Procedures for Degraded Buried Pipe. The Code Case addresses the nuclear industry need for evaluation procedures and acceptance criteria for the disposition of metal loss that is discovered during the inspection of metallic piping buried in a back-filled trench. In a second revision of the Code Case, several changes are proposed. First, guidance is provided for analytical evaluation of greater detail including finite element analysis methods. A new nonmandatory appendix is included to provide procedures for the evaluation of soil and surcharge loads using finite element analysis. Next, a second new nonmandatory appendix is provided giving detailed guidance on the evaluation of seismic loads. Finally, the need to evaluate the fatigue life of buried piping subjected to cyclic surface loading is now included and a design factor applied to the modulus of soil reaction is introduced. This paper presents details of the proposed changes to Code Case N-806-1 and their technical basis where applicable.

Author(s):  
David Kemp ◽  
Justin Gossard ◽  
Shane Finneran ◽  
Joseph Bratton

Pipeline in-line-inspections (ILI) are used to assess and track the integrity of pipelines, aiding in identifying a variety of features such as: metal loss, dents, out-of-roundness, cracks, etc. The presence of these features can negatively affect the operation, integrity, and remaining life of a pipeline. Proper interpretation of the impacts these features may have on a pipeline are crucial to maintaining the integrity of a pipeline. Several codes and publications exist to assess the severity of these features under known operating conditions, either through empirical formulations or more detailed analysis, in order to aid the operator in determining a corrective action plan. These empirical formulations are generally applicable to assess a singular defect but require a more detailed assessment to evaluate combined defects (i.e. dent in a bend). These detailed assessments typically require a higher level numerical simulation, such as Finite Element Analysis (FEA). This detailed FEA can be quite costly and time consuming to evaluate each set of combined features in a given ILI run. Thus, engineering judgement is critical in determining a worst-case scenario of a given feature set in order to prioritize assessment and corrective action. This study aims to assess dent features (many associated with metal loss) occurring in a pipe bend to determine a worst-case scenario for prioritization of a given feature listing. FEA was used to simulate a field bend of a given radius and angle in order to account for residual stresses in the pipe bend. A rigid indenter was used to form a dent of the approximate length, width, and depth from the ILI data. Separate models were evaluated considering the dent occurring in the intrados, extrados, and neutral axis of the pipe bend to evaluate the worst-case scenario for further assessment. The resulting stresses in the pipe bend-dent geometry, under proper loading were compared to the same dent scenario in a straight pipe segment to develop a stress concentration factor (SCF). This SCF was used in the API 579-1/ASME FFS-1 Fitness for Service (API 579) [1] methodology to determine the impact on the remaining life of the combined features.


Author(s):  
Robert O. McGill ◽  
Mark A. Moenssens ◽  
George A. Antaki ◽  
Douglas A. Scarth

ASME Section XI Code Case N-806, for evaluation of metal loss in Class 2 and 3 metallic piping buried in a back-filled trench, was first published in 2012. This Code Case has been prepared by the ASME Section XI Task Group on Evaluation Procedures for Degraded Buried Pipe. The Code Case addresses the nuclear industry need for evaluation procedures and acceptance criteria for the disposition of metal loss that is discovered during the inspection of metallic piping buried in a back-filled trench. A number of additional improvements have been proposed for Code Case N-806. These include expanded guidance for the determination and validation of a corrosion rate and other clarifications to improve ease of use. This paper presents an update of details of the proposed revisions to Code Case N-806 and their technical basis.


Author(s):  
Justin Gossard ◽  
Joseph Bratton ◽  
David Kemp ◽  
Shane Finneran ◽  
Steven J. Polasik

Dents created by third party mechanical damage are a severe integrity threat to onshore and offshore transmission pipelines. This type of damage is often associated with metal loss, which can be introduced during the initiation of a dent or develop as a result of the presence of a dent and associated coating damage. Once a dent has been found to be associated with metal loss through excavation, there is little guidance to determine the serviceability of the anomaly. In this study, dents with associated metal loss due to corrosion examined in the field are evaluated to determine the contribution of the interacting dent and metal loss features to the associated burst pressure of the feature. Twenty dents with metal loss flaws were identified through an ILI survey while in service to capture dimensions of the dent and metal loss features. Each site was excavated and measured using a laser scanner. The laser scanner produced 3D imaging with sufficient resolution of both the dent and metal loss areas as a 3D surface mesh. The 3D surface mesh was transformed into a 3D solid mesh and analyzed using a finite element analysis software package in order to determine a predicted internal pressure that would cause failure. A subsequent statistical assessment was performed to analyze the relationship between the ILI measurements and the predicted burst pressure resulting from finite element analysis of each dent with metal loss feature. Statistical analyses were used to evaluate the prediction capabilities of burst pressures of dent with metal loss features identified through ILI, prior to excavation and direct examination.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Zhanghai (John) Wang ◽  
Samuel Rodriguez

In fitness for service (FFS) assessments, one issue that people often encounter is a corroded area near a structural discontinuity. In this case, the formula-based sections of the FFS standard are incapable of evaluating the component without resorting to finite element analysis (FEA). In this paper, an FEA-based technical approach for evaluating FFS assessments using an elastic-plastic material model and reformed criteria is proposed.


Author(s):  
Robert O. McGill ◽  
Mark A. Moenssens ◽  
George A. Antaki ◽  
Douglas A. Scarth

ASME Section XI Code Case N-806, for evaluation of metal loss in Class 2 and 3 metallic piping buried in a back-filled trench, was published in 2012. This Code Case has been prepared by the ASME Section XI Task Group on Evaluation Procedures for Degraded Buried Pipe. The Code Case addresses the nuclear industry need for evaluation procedures and acceptance criteria for the disposition of metal loss that is discovered during the inspection of metallic piping buried in a back-filled trench. A number of improvements have been proposed for Code Case N-806. These include improvements to the analytical procedures for structural integrity evaluation under soil and surcharge loads. In addition, tables of soil properties and other parameters needed in the evaluation are proposed to be provided to improve ease of use. This paper presents the technical basis for the proposed revision to Code Case N-806.


2009 ◽  
Vol 33 (3) ◽  
pp. 399-409 ◽  
Author(s):  
Hadi Khoramishad ◽  
Majid Reza Ayatollahi

In this research, a buried pipe containing an external semi-elliptical crack has been modeled and investigated using finite element analysis. The interaction between the soil and pipe has been considered according to the Burns and Richard model. A few major parameters, namely, the soil height over pipe, the geometries of pipe and crack and the circumferential position of crack on pipe have been changed and their effects on elastic stress intensity factors have been studied at different positions along the crack front. The results showed that the crack experienced mixed mode loading condition and the circumferential crack position on pipe had a significant influence on the stress intensity factors.


Author(s):  
Masayuki Ozaki ◽  
Atsushi Yamaguchi ◽  
Takuyo Kaida ◽  
Satoshi Nagata

Reliability of Fitness-For-Service assessment has become more important especially for the aged pressure equipment such as towers in process plants put in service operation over decades. The effects of partial metal loss on buckling strength of the towers subject to overturning moment due to seismic or wind load are one of the critical issues to be clarified. The present paper simulates the buckling strength of towers under overturning moment by means of finite element analysis considering the condition that the shell has suffered from partial metal loss, and evaluates the validity of the buckling stress formulae of API 579-1/ASME FFS-1, NASA, and Donnell. It has been demonstrated that the buckling strength predicted by API formulae shows fairly good agreement with that simulated by finite element analysis. Finite element analysis results have shown that the axial length of metal loss does not affect the buckling stress very much while the buckling stress depends on the circumferential width of metal loss. It has been revealed that the API formulae underestimate the buckling stress when the width of metal loss is smaller than about 30 deg. The paper proposes the modification to the API formulae in this condition that gives more accurate buckling stress than the original formulae.


Author(s):  
D.-J. Shim ◽  
S. Kalyanam ◽  
E. Punch ◽  
T. Zhang ◽  
F. Brust ◽  
...  

The Advanced Finite Element Analysis (AFEA) methodology has been developed by the US NRC and the nuclear industry to evaluate the natural crack growth of primary water stress corrosion cracking (PWSCC) in nickel-based alloy materials. The AFEA methodology allows the progression of a planar crack subjected to typical SCC-type growth laws by calculating stress intensity factors at every nodal point along the crack front, and incrementally advancing the crack front in a more natural manner. This paper describes the enhancements that have been made to the existing AFEA methodology. The most significant enhancement was the feature to evaluate axial crack growth where the crack was contained within the susceptible material. In this paper, this methodology was validated by performing an AFEA evaluation for the axial crack that was found in the V.C. Summer hot leg dissimilar metal weld. Other enhancements to the AFEA methodology include; upgrade to the PipeFracCAE© software developed by Engineering Mechanics Corporation of Columbus, feature to handle non-idealized circumferential through-wall cracks, mapping of weld residual stress for crack growth, and determination of limiting crack size using elastic-plastic J-integral analysis that included secondary stress (weld residual stress and thermal transient stress) effects.


Author(s):  
Robert O. McGill ◽  
Mark A. Moenssens ◽  
George A. Antaki ◽  
Douglas A. Scarth

This paper presents the technical basis for Code Case N-806, Evaluation of Metal Loss in Class 2 and 3 Metallic Piping Buried in a Back-filled Trench – Section XI, Division 1. This Code Case has been prepared in the ASME Section XI Task Group on Evaluation Procedures for Degraded Buried Pipe. It addresses the nuclear industry need for evaluation procedures and acceptance criteria for the disposition of metal loss that may be discovered during the inspection of piping buried in a back-filled trench. This paper provides background discussion, scope of the Code Case, key definitions and a summary of Code Case methods followed by the basis explanation where necessary. It is organized to follow the same structure as the Code Case for ease of use.


Sign in / Sign up

Export Citation Format

Share Document