Development of Optimized Welding Consumable for Joining Type 410 Martensitic Stainless Steel

Author(s):  
Benjamin J. Lawson ◽  
Boian T. Alexandrov ◽  
Joseph C. Bundy ◽  
David Benson ◽  
Jorge A. Penso

Abstract Type 410 martensitic stainless steel is used in some downstream hydro-processing installations, due to its good resistance to sulfide corrosion and chloride stress corrosion cracking. Industry experience with Type 410 steel welds, using generic welding consumables, has shown difficulties in meeting the weld metal and HAZ hardness and toughness requirements. Recent research has pointed out the wide composition specifications of Type 410 base metal and welding consumables as the leading cause for significant hardness and toughness variations, related to exceeding the A1 temperature during PWHT and formation of fresh martensite, and to retention of significant amounts of delta ferrite. Predictive equations for the A1 temperature and the content of retained delta ferrite were used to identify optimal composition for Type 410 welding consumables with delta ferrite content below 20% and A1 temperature close to the upper end of the ASME specified PWHT range. Experimental metal core filler wire was manufactured and tested to validate the A1 temperature and delta ferrite content. A test weld in Type 410 steel was produced with the new filler wire and subjected to PWHT, metallurgical characterization, and mechanical testing. The weld metal and HAZ properties met the corresponding NACE and ASME hardness and toughness requirements.

Author(s):  
Takuya Kusunoki ◽  
Boian Alexandrov ◽  
Benjamin Lawson ◽  
Jorge Penso ◽  
Joe Bundy

Abstract Type 410 martensitic stainless steel is typically used in highly corrosive environments within petrochemical installations due to its resistance to halide stress corrosion cracking, hardenability, and low cost compared to austenitic stainless steel. However, the industry has experienced difficulties in meeting the ASME toughness, and NACE hardness requirements for wet sour services of Type 410 steel welds. Recent studies have shown that these problems are related to the wide compositional ranges of Type 410 base metals and welding consumables, leading to exceeding the A1 temperature during postweld heat treatment (PWHT) and formation of fresh martensite, and to retention of significant amount of delta ferrite in the final weld metal and heat affected zone microstructures. These studies have identified two Type 410 optimized weld metal compositions that met the specified hardness and toughness requirements. The objective of this work was to quantify the tempering response in one of the optimized welding consumables and in two Type 410 base metals. Samples of these materials were subjected to a series of PWHTs at temperatures corresponding to the lower and upper limits of the ASME code recommended temperature range (760 C and 800 °C) and at 10 °C below the A1 temperature of each material. The PWHT durations were 5 and 30 minutes, and 1, 2, and 4 hours. The hardness values related to all PWHTs performed below the corresponding A1 temperatures were used to generate Holloman–Jaffe type equations for all tested materials. As expected, the PWHTs performed above the A1 temperatures resulted in the formation of fresh martensite.


2016 ◽  
Vol 35 (9) ◽  
pp. 929-940
Author(s):  
Rong-Sheng Qi ◽  
Miao Jin ◽  
Bao-Feng Guo ◽  
Xin-Gang Liu ◽  
Lei Chen

AbstractThe compressive deformation behaviors of 410 martensitic stainless steel were investigated on a Gleeble-1500 thermomechanical simulator, and the experimental stress–strain data were obtained. The measured flow stress was corrected for friction and temperature. A constitutive equation that accounts for the influence of strain was established, and the hot-processing maps at different strain were plotted. The microstructure evolution of the hot-deformation process was studied on the basis of microstructural observations at high temperatures. Phase-transformation experiments on 410 steel were conducted at high temperatures to elucidate the effects of temperature on the delta-ferrite content. The initial forging temperature and optimum process parameters were obtained on the basis of the processing map and the changes in the delta-ferrite content at high temperatures.


Alloy Digest ◽  
1991 ◽  
Vol 40 (8) ◽  

Abstract LESCALLOY 15-5 VAC-ARC is a precipitation hardening martensitic stainless steel with minimal delta ferrite. Vacuum arc remelting in the production of the alloy provides a low gas content, clean steel with optimum transverse properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-522. Producer or source: Latrobe Steel Company.


2018 ◽  
Vol 7 (3) ◽  
pp. 366-370 ◽  
Author(s):  
Cesar G. Camerini ◽  
Vitor Manoel A. Silva ◽  
Iane A. Soares ◽  
Rafael Wagner F. Santos ◽  
Julio Endress Ramos ◽  
...  

2022 ◽  
Vol 60 (1) ◽  
pp. 46-52
Author(s):  
Young Woo Seo ◽  
Chan Yang Kim ◽  
Bo Kyung Seo ◽  
Won Sub Chung

This study evaluated changes in delta-ferrite content depending on the preheating of AISI 316L stainless steel. We also determined the reasons for the variation in delta-ferrite content, which affects corrosion resistance. Changes in delta-ferrite content after preheating was confirmed using a Feritscope, and the microstructure was analyzed using optical microscopy (OM). We found that the delta-ferrite microstructure size decreased when preheating time was increased at 1295 oC, and that the delta-ferrite content could be controlled through preheating. Potentiodynamic polarization test were carried out in NaCl (0.5 M) + H2SO4 (0.5 M) solution, and it was found that higher delta-ferrite content resulted in less corrosion potential and passive potential. To determine the cause, an analysis was conducted using energy-dispersive spectroscopy (EDS), which confirmed that higher delta-ferrite content led to weaker corrosion resistance, due to Cr degradation at the delta-ferrite and austenite boundaries. The degradation of Cr on the boundaries between austenite and delta-ferrite can be explained by the difference in the diffusion coefficient of Cr in the ferrite and austenite. A scanning electron microscopy (SEM) analysis of material used for actual semiconductor piping confirmed that corrosion begins at the delta-ferrite and austenite boundaries. These results confirm the need to control delta-ferrite content in AISI 316L stainless steel used for semiconductor piping.


2011 ◽  
Vol 295-297 ◽  
pp. 1919-1924 ◽  
Author(s):  
Kuang Hung Tseng ◽  
Kai Chieh Hsien

The aim of the present work was to investigate the effects of specific nitrogen gas additions to argon shielding gas on morphology and microstructure of austenitic stainless steel TIG welds. An autogenous TIG welding process was applied on type 316L stainless steel to produce a bead-on-plate weld. The ferrite content of weld metal was measured using a Feritscope. The results indicated that the arc voltage increase as the amount of nitrogen gas added to the argon atmosphere increases. The retained ferrite content of type 316L stainless steel TIG weld metal decreased rapidly as nitrogen gas addition to the argon shielding gas was increased.


2010 ◽  
Vol 527 (13-14) ◽  
pp. 3210-3216 ◽  
Author(s):  
P. Wang ◽  
S.P. Lu ◽  
N.M. Xiao ◽  
D.Z. Li ◽  
Y.Y. Li

Author(s):  
Steven L. McCracken ◽  
David Segletes

Abstract ASME Section XI Nonmandatory Appendix Q and Code Case N-504-4 are routinely used to install full structural weld overlays in the nuclear power industry for repair or mitigation of stress corrosion cracking in austenitic stainless steel weldments. Both Appendix Q and N-504-4 specify a Ferrite Number (FN) and carbon content requirement for the stainless steel weld metal used for the weld overlay to ensure acceptable resistance to stress corrosion cracking. The Ferrite Number (FN) is used in the ASME Code for establishing the delta ferrite content in the deposited weld metal. Field experience indicates there is often confusion and differing opinion concerning how the Ferrite Number and carbon content requirements of Appendix Q and N-504-4 are satisfied. This is in part due to unavailability of the original technical basis for these requirements. This paper provides a background for the delta ferrite and carbon content requirements, information on influence of delta ferrite and carbon content on stress corrosion cracking and U.S. Nuclear Regulatory Commission (NRC) guidance on the issue. Finally, this paper details a proposed revision of Nonmandatory Appendix Q and N-504-4 to clarify the FN and carbon content requirements.


2013 ◽  
Vol 794 ◽  
pp. 670-680 ◽  
Author(s):  
Tammana Jayakumar ◽  
A.K. Bhaduri ◽  
M.D. Mathew ◽  
Shaju K. Albert ◽  
U. Kamachi Mudali

For the future sodium-cooled fast reactors (SFRs), which are envisaged with a design life of 60 years, nitrogen-enhanced 316LN austenitic stainless steel (SS) with improved high-temperature properties is being developed. To optimize the enhanced nitrogen content in 316LN SS, the effect of nitrogen on its tensile, creep and low cycle fatigue behavior has been investigated. For different heats of 316LN SS containing 0.07-0.22 wt% nitrogen, the tensile and creep properties increased with increase in nitrogen content, while low cycle fatigue properties peaked at 0.14 wt% nitrogen. Finally, based on the evaluation of the hot cracking susceptibility of the different heats of 316LN SS with varying nitrogen content, using the Varestraint and Gleeble hot-ductility tests, the nitrogen content for the nitrogen-enhanced 316LN SS has been optimized at a level of 0.14 wt%. The 0.14 wt% nitrogen content in this optimised composition shifts the solidification mode of the weld metal to fully austenitic region, including that due to dilution of nitrogen from the base metal, thereby increasing its hot cracking susceptibility. This necessitated development and qualification of welding electrodes for obtaining weld metal with 0.14 wt% nitrogen by optimising the weld metal chemistry so as to obtain the requisite delta ferrite content, tensile properties, and very importantly impact toughness both in the as-welded and aged conditions. Studies on localised corrosion behaviour of nitrogen-enhanced 316LN SS indicated the beneficial effect of nitrogen addition to sensitization, pitting, intergranular corrosion, stress corrosion cracking and corrosion fatigue.


Sign in / Sign up

Export Citation Format

Share Document