Computations of Single and Multiphase Flows Using a Lattice Boltzmann Solver

Author(s):  
M. Wasy Akhtar ◽  
Holley C. Love

Abstract There is considerable interest in high fidelity simulation of both single phase incompressible flows and multiphase flows. Most commonly applied numerical methods include finite difference, finite volume, finite element and spectral methods. All of these methods attempt to capture the flow details by solving the Navier–Stokes equations. Challenges of solving the Navier–Stokes single phase incompressible flows include the non-locality of the pressure gradient, non-linearity of the advection term and handling the pressure-velocity coupling. Multiphase flow computations pose additional challenges, such as property and flow variable discontinuities at the interface, whose location and orientation is not known a priori. Further, capturing/tracking of the multiphase interface requires solution of an additional advection equation. Recently, the lattice Boltzmann method has been applied to compute fluid dynamics simulations both for single and multiphase configurations; it is considered a modern CFD approach with improved accuracy and performance. Specifically, we employ a multiple-relaxation time (MRT) technique for the collision term on a D3Q27 lattice. The multiphase interface is captured using the phase-field approach of Allen-Cahn. Test cases include lid driven cavity, vortex shedding for a double backward facing step, Rayleigh Taylor instability, Enright’s deformation test and rising bubble in an infinite domain. These test cases validate different aspects of the single and multiphase model, so that the results can be interpreted with confidence that the underlying computational framework is sufficiently accurate.

2016 ◽  
Vol 20 (2) ◽  
pp. 301-324 ◽  
Author(s):  
Weidong Li ◽  
Li-Shi Luo

AbstractA genuine finite volume method based on the lattice Boltzmann equation (LBE) for nearly incompressible flows is developed. The proposed finite volume lattice Boltzmann method (FV-LBM) is grid-transparent, i.e., it requires no knowledge of cell topology, thus it can be implemented on arbitrary unstructured meshes for effective and efficient treatment of complex geometries. Due to the linear advection term in the LBE, it is easy to construct multi-dimensional schemes. In addition, inviscid and viscous fluxes are computed in one step in the LBE, as opposed to in two separate steps for the traditional finite-volume discretization of the Navier-Stokes equations. Because of its conservation constraints, the collision term of the kinetic equation can be treated implicitly without linearization or any other approximation, thus the computational efficiency is enhanced. The collision with multiple-relaxation-time (MRT) model is used in the LBE. The developed FV-LBM is of second-order convergence. The proposed FV-LBM is validated with three test cases in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the Blasius boundary layer; and (c) the steady flow past a cylinder at the Reynolds numbers Re=10, 20, and 40. The results verify the designed accuracy and efficacy of the proposed FV-LBM.


1987 ◽  
Vol 109 (4) ◽  
pp. 345-352 ◽  
Author(s):  
M. Reggio ◽  
R. Camarero

A numerical procedure to solve three-dimensional incompressible flows in arbitrary shapes is presented. The conservative form of the primitive-variable formulation of the time-dependent Navier-Stokes equations written for a general curvilinear coordiante system is adopted. The numerical scheme is based on an overlapping grid combined with opposed differencing for mass and pressure gradients. The pressure and the velocity components are stored at the same location: the center of the computational cell which is used for both mass and the momentum balance. The resulting scheme is stable and no oscillations in the velocity or pressure fields are detected. The method is applied to test cases of ducting and the results are compared with experimental and numerical data.


2014 ◽  
Vol 6 (4) ◽  
pp. 436-460 ◽  
Author(s):  
C. Shu ◽  
Y. Wang ◽  
C. J. Teo ◽  
J. Wu

AbstractA lattice Boltzmann flux solver (LBFS) is presented in this work for simulation of incompressible viscous and inviscid flows. The new solver is based on Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S) equations and lattice Boltzmann equation (LBE). The macroscopic differential equations are discretized by the finite volume method, where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing and time interval, limitation to viscous flows. LBFS is validated by its application to simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numerical results compare very well with available data in the literature, which show that LBFS has the second order of accuracy in space, and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.


2016 ◽  
Vol 42 ◽  
pp. 1660152
Author(s):  
H. W. ZHENG ◽  
C. SHU

It is well known that the numerical scheme is a key factor to the stability and accuracy of a Navier-Stokes solver. Recently, a new hybrid lattice Boltzmann numerical flux (HLBFS) is developed by Shu's group. It combines two different LBFS schemes by a switch function. It solves the Boltzmann equation instead of the Euler equation. In this article, the main object is to evaluate the ability of this HLBFS scheme by our in-house cell centered hybrid mesh based Navier-Stokes code. Its performance is examined by several widely-used bench-mark test cases. The comparisons on results between calculation and experiment are conducted. They show that the scheme can capture the shock wave as well as the resolving of boundary layer.


2017 ◽  
Vol 21 (2) ◽  
pp. 443-465
Author(s):  
Liangqi Zhang ◽  
Zhong Zeng ◽  
Haiqiong Xie ◽  
Zhouhua Qiu ◽  
Liping Yao ◽  
...  

AbstractIn this paper, an alternative lattice Boltzmann (LB)model for incompressible flows is proposed. By modifying directly the moments of the equilibrium distribution function (EDF), the continuous expression of the EDF in tensor Hermite polynomials is derived using the moment expansion and then discretizedwith the discrete velocity vectors of the D2Q9 lattice. The present model as well as its counterpart, the incompressible LB model proposed by Guo, reproduces the incompressible Navier-Stokes (N-S) equations for both steady and unsteady flows. Besides, an alternative pressure formula, which represents the pressure as the diagonal part of the stress tensor, is adopted in the present model. Furthermore, in order to enhance the stability of the present LB model, an additional relaxation time pertaining to the non-hydrodynamic mode is added to the BGK collision operator. The present LB model is validated by two benchmark tests: the cavity flow with different Reynolds number (Re) and the flow past an impulsively started cylinder at Re=40 and 550.


2012 ◽  
Vol 698 ◽  
pp. 282-303 ◽  
Author(s):  
Goncalo Silva ◽  
Viriato Semiao

AbstractThe isothermal Navier–Stokes equations are determined by the leading three velocity moments of the lattice Boltzmann method (LBM). Necessary conditions establishing the hydrodynamic consistency of these moments are provided by multiscale asymptotic techniques, such as the second-order Chapman–Enskog expansion. However, for simulating incompressible hydrodynamics the structure of the forcing term in the LBM is still a discordant issue as far as its correct velocity expansion order is concerned. This work uses the traditional second-order Chapman–Enskog expansion analysis to demonstrate that the truncation order of the forcing term may depend on the time regime in this case. This is due to the fact that LBM does not reproduce exactly the incompressibility condition. It rather approximates it through a weakly compressible or an artificial compressible system. The present study shows that for the artificial compressible setup, as the incompressibility flow condition is singularly perturbed by the time variable, such a connection will also affect the LBM forcing formulation. As a result, for time-independent incompressible flows the LBM forcing must be truncated to first order whereas for a time-dependent case it is convenient to include the second-order term. The theoretical findings are confirmed by numerical tests carried out in several distinct benchmark flows driven by space- and/or time-varying body forces and possessing known analytical solutions. These results are verified for the single relaxation time, the multiple relaxation time and the regularized collision models.


Author(s):  
Hrvoje Jasak ◽  
Gregor Cvijetić

An efficient method for tackling non-linear, temporally–periodic incompressible flows is presented in this paper. Assuming temporally fully periodic flow, Harmonic Balance method deploys Fourier transformation in order to formulate transient problem as a multiple quasi-steady state problems. The method is implemented in OpenFOAM and developed for a general transport equation and incompressible Navier–Stokes equations. Validation is presented on three test cases: oscillating scalar case for scalar transport validation, a flow around a 2D NACA airfoil and a 3D Onera M6 wing for turbulent incompressible Navier–Stokes validation. For all test cases Harmonic Balance results are compared to transient simulation results. Verification of the model is performed by changing the number of harmonics for all test cases.


Author(s):  
J. R. Murdock ◽  
S. L. Yang

For the evaluation of a broad range of Re in incompressible flows, particularly unsteady and transition regimes, the Vreman subgrid scale model is studied within the framework of a modified lattice Boltzmann equation. A unique multiple relaxation time form which recovers the fully incompressible unsteady Navier-Stokes equations is derived for the D3Q19 lattice. Solutions to the 3D-driven cavity are compared to a number of lattice Boltzmann and Navier-Stokes solutions. Initial simulations demonstrate the vanishing nature of eddy viscosity in the steady laminar regime. Onset of unsteadiness is found between Re 1900 and 1950, matching well with the wealth of literature. At Re 6000, velocity history and complex vortex structures show a transition to turbulence near the domain bottom and front walls while the centre of the domain retains laminar characteristics. By Re 8000 intermittent turbulence has progressed to the domain centre. This range of Re for transition and the flow characteristics are in agreement with the general ranges in literature, with further observations being added here. The Vreman model with an incompressible lattice Boltzmann method is found to be a promising tool for laminarto- turbulent simulation.


2018 ◽  
Vol 32 (12n13) ◽  
pp. 1840012 ◽  
Author(s):  
Qi-Feng Wu ◽  
Chang Shu ◽  
Yan Wang ◽  
Li-Ming Yang

The recently proposed lattice Boltzmann flux solver (LBFS) is a new approach for the simulation of incompressible flow problems. It applies the finite volume method (FVM) to discretize the governing equations, and the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. In the previous application of the LBFS, the structured meshes have been commonly employed, which may cause inconvenience for problems with complex geometries. In this paper, the LBFS is extended to arbitrarily unstructured meshes for effective simulation of incompressible flows. Two test cases, the lid-driven flow in a triangular cavity and flow around a circular cylinder, are carried out for validation. The obtained results are compared with the data available in the literature. Good agreement has been achieved, which demonstrates the effectiveness and reliability of the LBFS in simulating flows on arbitrarily unstructured meshes.


Sign in / Sign up

Export Citation Format

Share Document