A New Research Method for Corrosion Defect in Metal Pipeline by Using Pulsed Eddy Current

Author(s):  
Fan Zhao ◽  
Delu Chen ◽  
Zhe Pu ◽  
Jielu Wang

Abstract Pulsed eddy current (PEC) is a new technique to distinguish corrosion defeats inside and outside the metal pipeline. In comparison with other eddy current techniques, the PEC technique has the advantage of being simple and high velocity. In this article, a brand-new PEC probe based on differential conductivity is established through the combination of modules like square wave generator, eddy current coil bridge, differential current, voltage sample circuits and so on. The 50% duty cycle square wave is used as the driving signal. To measure differential conductance, a coil bridge configuration with two legs is adopted. One leg is composed of measurement eddy current coil and the in-series resistor, and the other is reference eddy current coil and the in-series resistor. Because the two legs go through defects in pipeline non-synchronously, there is a differential conductance between the two coils. A trans-impedance amplify circuit is used to detect coil eddy current. At the same time, two amplifiers are used to measure the differential voltage between the two coils. A 14 bit ADC is used to sample differential voltage, measurement and reference eddy currents which transferred to differential current by main processor Complex Programmable Logic Device (CPLD). CPLD is used to get differential conductance by differential current divide differential voltage. At last the eddy current signal sampling sequence is developed. A dynamic testing fixture with artificial defects carved on the pipeline is used to validate PEC probe’s accuracy. The differential conductance signals were displayed on the oscilloscope. Results showed that the inside defect had two peaks, positive peak and negative peak, but the outside defect only had one positive peak. We can conclude that the brand-new PEC probe has high accuracy in distinguishing the inside and outside defects.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 19-29
Author(s):  
Shuting Ren ◽  
Yong Li ◽  
Bei Yan ◽  
Jinhua Hu ◽  
Ilham Mukriz Zainal Abidin ◽  
...  

Structures of nonmagnetic materials are broadly used in engineering fields such as aerospace, energy, etc. Due to corrosive and hostile environments, they are vulnerable to the Subsurface Pitting Corrosion (SPC) leading to structural failure. Therefore, it is imperative to conduct periodical inspection and comprehensive evaluation of SPC using reliable nondestructive evaluation techniques. Extended from the conventional Pulsed eddy current method (PEC), Gradient-field Pulsed Eddy Current technique (GPEC) has been proposed and found to be advantageous over PEC in terms of enhanced inspection sensitivity and accuracy in evaluation and imaging of subsurface defects in nonmagnetic conductors. In this paper two GPEC probes for uniform field excitation are intensively analyzed and compared. Their capabilities in SPC evaluation and imaging are explored through simulations and experiments. The optimal position for deployment of the magnetic field sensor is determined by scrutinizing the field uniformity and inspection sensitivity to SPC based on finite element simulations. After the optimal probe structure is chosen, quantitative evaluation and imaging of SPC are investigated. Signal/image processing algorithms for SPC evaluation are proposed. Through simulations and experiments, it has been found that the T-shaped probe together with the proposed processing algorithms is advantageous and preferable for profile recognition and depth evaluation of SPC.


2013 ◽  
Author(s):  
Marvin Rourke ◽  
Yong Li ◽  
Glyn Roberts

2013 ◽  
Vol 33 (3) ◽  
pp. 866-870
Author(s):  
Xuanbing QIU ◽  
Jilin WEI ◽  
Xiaochao CUI ◽  
Chunhua XIA

2012 ◽  
Vol 12 (6) ◽  
pp. 2113-2120 ◽  
Author(s):  
Yunze He ◽  
Guiyun Tian ◽  
Hong Zhang ◽  
Mohammed Alamin ◽  
Anthony Simm ◽  
...  

2021 ◽  
pp. 1-1
Author(s):  
Faris Nafiah ◽  
Mohammad O. Tokhi ◽  
Gholamhossein Shirkoohi ◽  
Fang Duan ◽  
Zhanfang Zhao ◽  
...  

2021 ◽  
Vol 1846 (1) ◽  
pp. 012018
Author(s):  
Chunxu Shang ◽  
Yan Guo ◽  
Zehao Chen ◽  
Haonan You

2007 ◽  
Author(s):  
Catalin V. Mandache ◽  
J. H. Vivier Lefebvre

2008 ◽  
Vol 41 (6) ◽  
pp. 467-476 ◽  
Author(s):  
Tianlu Chen ◽  
Gui Yun Tian ◽  
Ali Sophian ◽  
Pei Wen Que

Sign in / Sign up

Export Citation Format

Share Document