The Effect of Dynamic Alterations in Stiffness of the Substrate on Cell Growth

Author(s):  
Frank X. Jiang ◽  
Uday Chippada ◽  
Lulu Li ◽  
Bernard Yurke ◽  
Rene S. Schloss ◽  
...  

Cells reside in a dynamic environment composed of extracellular matrix (ECM) and other cells, and take a variety of cues, of which mechanical stresses and strains are an important subset. ECM undergoes constant synthesis and degradation, and its mechanical stiffness can also be altered, with ageing, upon external assault or via pathological processes. Particularly in load barring tissues, the mechanical properties of the ECM can vary, by exposure to changing load conditions through, for example, collagen realignment. Tissue-implant interfaces also present medically important dynamic mechanical environment. Furthermore, recent studies revealed that the ranges of mechanical stiffness of ECM or substrates can alter specific cellular properties in distinct ways. From an engineering viewpoint, it is thus beneficial to be able to modify the physical properties of the biomaterials for the implants, providing optimal conditions for a specific desired outcome at different points during time progression. All of these reasons make it desirable to have a dynamic culture system with controlled property changes.

Author(s):  
Abel L. Thangawng ◽  
Rodney S. Ruoff ◽  
Jonathan C. Jones ◽  
Matthew R. Glucksberg

It has been reported that the mechanical properties of a substrate influence cell motility, morphology, and adhesion [1–3]. This work is an attempt to move a step further beyond cells’ sensing the mechanical properties of their environment, by determining whether the secretion and assembly of laminin extracellular matrix is regulated by the mechanical environment in which the cell is placed. We hypothesize that this matrix then influences the behavior of the cell, particularly with regard to its motility.


2005 ◽  
Vol 288-289 ◽  
pp. 23-26
Author(s):  
Dong Lim Seol ◽  
Hyeong In Kim ◽  
Woo Jung Lee ◽  
Won Hee Jang ◽  
Jeong Koo Kim ◽  
...  

A culture system that is capable of providing even and uniform distribution and deposition of cells and extracellular matrix (ECM) is desired to enhance biological functions of the tissue-engineered artificial dermis (TEADs). For this purpose, we have developed a perfusion culture system that offers uniform exchange of nutrients and gases along the scaffold. Viability and effectiveness of the system were investigated by comparing biological and mechanical properties of TEADs. Results showed that the TEADs constructed by the perfusion culture system revealed significantly increased cell growth, ECM synthesis, and elastic modulus compared to those by the conventional static culture system. In addition, histological findings indicated that cells were more evenly distributed and ECM deposition increased in TEADs with the perfusion culture system. Therefore, it can be suggested that the perfusion culture system can constitute a more promising approach for constructing the TEADs.


2018 ◽  
Author(s):  
F. Saadat ◽  
M.J. Lagieski ◽  
V. Birman ◽  
S. Thomopoulos ◽  
G.M. Genin

AbstractThe extracellular matrix surrounding chondrocytes within cartilage and fibrocartilage has spatial gradients in mechanical properties. Although the function of these gradients is unknown, the potential exists for cells to tailor their mechanical microenvironment through these gradients. We hypothesized that these gradients enhance fluid transport around the cell during the slow loading cycles that occur over the course of a day, and that this enhancement changes the nature of the mechanical signals received at the surface of the cell. To test this hypothesis, we studied the effect of these gradients on the mechanical environment around a chondrocyte using a closed form, linearized model. Results demonstrated that functional grading of the character observed around chondrocytes in articular cartilage enhances fluid transport, and furthermore inverts compressive radial strains to provide tensile signals at the cell surface. The results point to several potentially important roles for functional grading of the pericellular matrix.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4284
Author(s):  
Lvtao Zhu ◽  
Mahfuz Bin Rahman ◽  
Zhenxing Wang

Three-dimensional integrated woven spacer sandwich composites have been widely used as industrial textiles for many applications due to their superior physical and mechanical properties. In this research, 3D integrated woven spacer sandwich composites of five different specifications were produced, and the mechanical properties and performance were investigated under different load conditions. XR-CT (X-ray computed tomography) images were employed to visualize the microstructural details and analyze the fracture morphologies of fractured specimens under different load conditions. In addition, the effects of warp and weft direction, face sheet thickness, and core pile height on the mechanical properties and performance of the composite materials were analyzed. This investigation can provide significant guidance to help determine the structure of composite materials and design new products according to the required mechanical properties.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shaohua Wu ◽  
Vikas Kumar ◽  
Peng Xiao ◽  
Mitchell Kuss ◽  
Jung Yul Lim ◽  
...  

AbstractHeart valve disease is a common manifestation of cardiovascular disease and is a significant cause of cardiovascular morbidity and mortality worldwide. The pulmonary valve (PV) is of primary concern because of its involvement in common congenital heart defects, and the PV is usually the site for prosthetic replacement following a Ross operation. Although effects of age on valve matrix components and mechanical properties for aortic and mitral valves have been studied, very little is known about the age-related alterations that occur in the PV. In this study, we isolated PV leaflets from porcine hearts in different age groups (~ 4–6 months, denoted as young versus ~ 2 years, denoted as adult) and studied the effects of age on PV leaflet thickness, extracellular matrix components, and mechanical properties. We also conducted proteomics and RNA sequencing to investigate the global changes of PV leaflets and passage zero PV interstitial cells in their protein and gene levels. We found that the size, thickness, elastic modulus, and ultimate stress in both the radial and circumferential directions and the collagen of PV leaflets increased from young to adult age, while the ultimate strain and amount of glycosaminoglycans decreased when age increased. Young and adult PV had both similar and distinct protein and gene expression patterns that are related to their inherent physiological properties. These findings are important for us to better understand the physiological microenvironments of PV leaflet and valve cells for correctively engineering age-specific heart valve tissues.


2017 ◽  
Vol 12 (3) ◽  
pp. 035014 ◽  
Author(s):  
I V Sukhorukova ◽  
A N Sheveyko ◽  
K L Firestein ◽  
Ph V Kiryukhantsev-Korneev ◽  
D Golberg ◽  
...  

Author(s):  
Toshihiko Shiraishi ◽  
Ietomo Matsunaga ◽  
Shin Morishita ◽  
Ryohei Takeuchi ◽  
Tomoyuki Saito ◽  
...  

This paper describes the effects of ultrasound stimulation on chondrocytes in three-dimensional culture in relation to the production of regenerative cartilage tissue, using collagen sponges as a carrier and supplementation with hyaluronic acid (used in the conservative treatment of osteoarthritis). It has been shown that cell proliferation and matrix production can be facilitated by considering the mechanical environment of the cultured chondrocytes and the mechanical properties of the scaffold structure used in the culture and of the stimulation used.


2001 ◽  
Vol 16 (3) ◽  
pp. 500-505 ◽  
Author(s):  
Alessia Fornoni ◽  
Flavia Cornacchia ◽  
Guy A. Howard ◽  
Bernard A. Roos ◽  
Gary E. Striker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document