Angiogenic Nanoscaffold Accelerates Diabetic Wound Healing and Improves Wound Tissue Strength in db/db Mice

Author(s):  
Swathi Balaji ◽  
Abdul Q. Sheikh ◽  
Lee Morris ◽  
Foong Y. Lim ◽  
Timothy M. Crombleholme ◽  
...  

Chronic ulcers are a leading cause of morbidity in diabetic patients. Diabetes is associated with major changes in the wound microenvironment and disruption of normal wound healing process, characterized by a prolonged inflammatory phase with elevated levels of wound proteases and increased degradation of extracellular matrix (ECM) components [1]. This impedes wound healing due to a lack of provisional matrix, impaired recruitment and survival of endothelial (EC) and endothelial precursor (EPC) cells, and insufficient neovascularization, resulting in delayed healing. Therefore, strategies focused on restoring the diabetic wound microenvironment by decreasing ECM degradation and promoting neovascularization are promising for development of new therapies to treat chronic diabetic ulcers.

2019 ◽  
Vol 7 (6) ◽  
pp. 940-952 ◽  
Author(s):  
Weihan Xie ◽  
Xiaoling Fu ◽  
Fengling Tang ◽  
Yunfei Mo ◽  
Jun Cheng ◽  
...  

Many pathophysiologic conditions can interrupt the normal wound healing process and lead to chronic wounds due to the arrest of macrophages in their inflammatory phenotype.


2020 ◽  
Vol 10 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Ran Wei ◽  
Shijun Nie ◽  
Jing Ma ◽  
Changmei Feng ◽  
Hongyu Kuang

Diabetic wound ulcers and unhealed ulcerations have caused in severe difficulties of diabetic patients all around the world. The anti-microbial peptides (AMP) and nanomaterials have been demonstrated beneficial in diabetic wound healing studies. Diabetic wound healing process can be delayed significantly due to the infection issues. Hence in this report, biologically synthesized cerium oxide (CeO2) nanoparticles incorporated with reduced graphene oxide (RGO) and AMP for effective and rapid diabetic wound healing have been reported. At first, reduced graphene oxide was prepared from graphene oxide to prepare CeO2/RGO nanocomposites. Biocompatible AMP (IP-1) functionalized CeO2/RGO nanocomposites were accordingly prepared to study the diabetic wound healing process. Rats, the wound healing models with the wound size of about 1.5 cm2 were tested with the as-prepared samples. Further, the prepared samples were tested in a wound healing model of rate with the wound of size 1.5 cm2. Almost complete recovery of wounds i.e., 100% closure of wound area was observed after 2 weeks of treatment by the prepared samples. Biocompatible AMP (IP-1) functionalized CeO2/RGO nanocomposites enhances rapid keratinocytes proliferation by short time thereby it proves the enhanced ability of the prepared samples to act as a wound healing in-vivo drugs. HE and MTC staining protocols to illustrate histological observations elucidates the keratinocytes creation by biocompatible AMP (IP-1) functionalized CeO2/RGO nanocomposites.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Sandra Matabi Ayuk ◽  
Heidi Abrahamse ◽  
Nicolette Nadene Houreld

The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hadeel A. Al-Rawaf ◽  
Sami A. Gabr ◽  
Ahmad H. Alghadir

Background. Circulating micro-RNAs are differentially expressed in various tissues and could be considered as potential regulatory biomarkers for T2DM and related complications, such as chronic wounds. Aim. In the current study, we investigated whether ginger extract enriched with [6]-gingerol-fractions either alone or in combination with vitamin D accelerates diabetic wound healing and explores underlying molecular changes in the expression of miRNA and their predicted role in diabetic wound healing. Methods. Diabetic wounded mice were treated with [6]-gingerol-fractions (GF) (25 mg/kg of body weight) either alone or in combination with vitamin D (100 ng/kg per day) for two weeks. Circulating miRNA profile, fibrogenesis markers, hydroxyproline (HPX), fibronectin (FN), and collagen deposition, diabetic control variables, FBS, HbA1c, C-peptide, and insulin, and wound closure rate and histomorphometric analyses were, respectively, measured at days 3, 6, 9, and 15 by RT–PCR and immunoassay analysis. Results. Treatment of diabetic wounds with GF and vitamin D showed significant improvement in wound healing as measured by higher expression levels of HPX, FN, collagen, accelerated wound closure, complete epithelialization, and scar formation in short periods (11-13 days, (P<0.01). On a molecular level, three circulating miRNAs, miR-155, miR-146a, and miR-15a, were identified in diabetic and nondiabetic skin wounds by PCR analysis. Lower expression in miR-155 levels and higher expression of miR-146a and miR-15a levels were observed in diabetic skin wounds following treatment with gingerols fractions and vitamin D for 15 days. The data showed that miRNAs, miR-146a, miR-155, and miR-15a, correlated positively with the expression levels of HPX, FN, and collagen and negatively with FBS, HbA1c, C-peptide, and insulin in diabetic wounds following treatment with GF and /or vitamin D, respectively. Conclusion. Treatment with gingerols fractions (GF) and vitamin D for two weeks significantly improves delayed diabetic wound healing. The data showed that vitamin D and gingerol activate vascularization, fibrin deposition (HPX, FN, and collagen), and myofibroblasts in such manner to synthesize new tissues and help in the scar formation. Accordingly, three miRNAs, miR-155, miR-146a, and miR-15, as molecular targets, were identified and significantly evaluated in wound healing process. It showed significant association with fibrin deposition, vascularization, and reepithelialization process following treatment with GF and vitamin D. It proposed having anti-inflammatory action and promoting new tissue formation via vascularization process during the wound healing. Therefore, it is very interesting to consider miRNAs as molecular targets for evaluating the efficiency of nondrug therapy in the regulation of wound healing process.


2021 ◽  
Vol 18 ◽  
Author(s):  
Saima Tufail ◽  
Muhammad Irfan Siddique ◽  
Muhammad Sarfraz ◽  
Muhammad Farhan Sohail ◽  
Muhammad Nabeel Shahid ◽  
...  

Introduction: The pleiotropic effects of statins are recently explored for wound healing through angiogenesis and lymph-angiogenesis that could be of great importance in diabetic wounds. Aim: Aim of the present study is to fabricate nanofilm embedded with simvastatin loaded chitosan nanoparticles (CS-SIM-NPs) has been reported herein to explore the efficacy of SIM in diabetic wound healing. Methods: The NPs, prepared via ionic gelation, were 173nm ± 2.645 in size with a zeta potential -0.299 ± 0.009 and PDI 0.051 ± 0.088 with excellent encapsulation efficiency (99.97%). The optimized formulation (CS: TPP, 1:1) that exhibited the highest drug release (91.64%) was incorporated into polymeric nanofilm (HPMC, Sodium alginate, PVA), followed by in vitro characterization. The optimized nanofilm was applied to the wound created on the back of diabetes-induced (with alloxan injection 120 mg/kg) albino rats. Results: The results showed significant (p < 0.05) improvement in the wound healing process compared to the diabetes-induced non-treated group. The results highlighted the importance of nanofilms loaded with SIM-NPs in diabetic wound healing through angiogenesis promotion at the wound site. Conclusion: Thus, CS-SIM-NPs loaded polymeric nanofilms could be an emerging diabetic wound healing agent in the industry of nanomedicines.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Mohammad Afsahi ◽  
Hamid Reza Ahmadi Ashtiani ◽  
Amir Hosein Askari Pour ◽  
Ebrahim Hazrati

: Chronic wound healing remains a complicated issue in the world's scientific health society. Alterations in the human body conditions such as biochemical, immunological, and physiological states may lead to non-healing wounds, making the treatment an insurmountably long and expensive procedure. Diabetes mellitus disposes the body to many complicated conditions while preventing diabetic wounds away from the normal wound-healing process. As topical administration is a favorable route of treating wounds, here, in this article, different topical materials and their roles are briefly reviewed.


2018 ◽  
pp. 116-124
Author(s):  
Damsir Eni Ungke

Diabetic injury is one form of chronic complications. Diabetes mellitus is an open wound on the skin surface that can be accompanied by local tissue death. Diabetes mellitus patients at risk of 29 times the occurrence of diabetic injuries. Diabetic injury is an open wound on the skin surface caused by the presence of macroangiopathy resulting in vascular insusifiensi and neuropati. Organs most often affected by diabetes mellitus complications include the leg blood vessels. Disorders of blood vessels that often occur in diabetes that is on the legs and feet. This study aims to determine the effectiveness of wound care using modern bandage (Metcofazin) on diabetic wound healing process at Emergency Hospital (IGD) Arifin Nu'mang Hospital of Sidrap Regency, and to know the effectiveness of wound care using conventional dressing (normal saline saline NaCl 0 , 9% and gauze bandage) to diabetic wound healing process at Emergency Injury Installation (IGD) Arifin Nu'mang Hospital of Sidrap Regency. The type of research used by the researcher is qualitative research with case study approach. This research has been conducted on 21 November until December 21, 2014 at the Emergency Installation (IGD) Arifin Nu'mang Hospital, Sidrap Regency. Samples used in this study are patients with diabetic injuries at Arifin Nu'mang Hospital Sidrap District with sampling technique by puposive sampling. The results of this study indicate that the treatment of luk a using a modern bandage (metcofazine) is more effective than wound care using conventional dressing (normal saline 0.9% NaCl saline and gauze dressing) on ​​diabetic wound healing process at Arifin Nu'mang Hospital Sidrap Hospital.


2020 ◽  
Vol 133 (19) ◽  
pp. jcs235838
Author(s):  
Peilang Yang ◽  
Xiqiao Wang ◽  
Di Wang ◽  
Yan Shi ◽  
Meng Zhang ◽  
...  

ABSTRACTBesides regulating glucose levels, insulin has been reported to participate actively in many other functions, including modulating inflammatory reactions. In this study we investigated how topical insulin application would affect the diabetic wound healing process. We found that the excessive expression of insulin-degrading enzyme led to insufficient insulin levels in diabetic skin during wound healing, which ultimately reduced the recovery rate of diabetic wounds. We confirmed that topical insulin application could reverse the impaired inflammation reaction in the diabetic wound environment and promote healing of diabetic wounds. Our study revealed that insulin promoted apoptosis of neutrophils and subsequently triggered polarization of macrophages. Both in vivo and in vitro studies verified that insulin re-established phagocytosis function and promoted the process of phagocytosis-induced apoptosis in neutrophils. Furthermore, we found that insulin treatment also promoted efferocytosis of the apoptosed neutrophils by macrophages, and thus induced macrophages to change their polarization state from M1 to M2. In conclusion, our studies proved that the exogenous application of insulin could improve diabetic wound healing via the restoration of the inflammatory response.


2019 ◽  
Vol 31 (04) ◽  
pp. 1950029
Author(s):  
K. S. Babu ◽  
Sukanta Sabut ◽  
Y. B. Ravi Kumar

Wound healing is a slow process in diabetic patients due to levels of insulin variations in the body. Thus, we present an automated system to analyze and assess different stages of wound healing process of diabetic patients. The diabetic wound healing stages have been defined into three types, such as the level of tissues present in the wound: The percentage of granulations tissues, Necrotic tissues and Slough tissues present in the diabetic patients. The performance of the proposed method shall be assessed based on the clear accuracy of segmentation of wound region present in the patient body. The Decision Tree-based Segmentation method has yielded a good segmentation accuracy of 98.32% in comparison with the ground truth results of clinical data. Further, the assessment of wound healing stages of proposed method has given a good accuracy of measuring the stages of diabetic patients by measuring the percentage of different types of tissues present in the wound region. Based on the results of classification accuracy of the proposed method, we assess whether the wound is going to heal quickly or not. Thus, we presented an algorithm of Decision Trees for the purpose of segmentation and assessment of wound healing process of diabetic patients.


2021 ◽  
Author(s):  
Ya Guan ◽  
Hong Niu ◽  
Zhongting Liu ◽  
Yu Dang ◽  
Jie Shen ◽  
...  

Non-healing diabetic wound is one of the most common complications for diabetic patients. Chronic hypoxia is among the prominent factors that delay the wound healing process. Therefore, sustained oxygenation to alleviate hypoxia is hypothesized to promote diabetic wound healing. Yet it cannot be achieved by current clinical approaches including hyperbaric oxygen therapy. Herein, we developed a sustained oxygenation system consisting of oxygen-release microspheres and a reactive oxygen species (ROS)-scavenging hydrogel. The hydrogel was used to capture the ROS that is elevated in the diabetic wounds, and that may be generated due to oxygen release. The sustainedly released oxygen augmented survival and migration of keratinocytes and dermal fibroblasts; promoted angiogenic growth factor expression, and angiogenesis in the diabetic wounds; and decreased M1 macrophage density. These effects led to a significant increase of wound closure rate. These findings reveal that sustained oxygenation alone without using drugs is capable of healing diabetic wounds.


Sign in / Sign up

Export Citation Format

Share Document