Kinematics and Kinetics of Flagellar Locomotion in Chlamydomonas Reinhardtii

Author(s):  
P. V. Bayly ◽  
B. L. Lewis ◽  
E. C. Ranz ◽  
R. J. Okamoto ◽  
R. B. Pless ◽  
...  

The forces exerted on the flagellum of the swimming alga Chlamydomonas reinhardtii by surrounding fluid are estimated from video data. “Wild-type” cells, as well as cells lacking inner dynein arms (ida3) and cells lacking outer dynein arms (oda2) were imaged (350 fps; 125 nm). Digital image registration and sorting algorithms provide high-resolution descriptions of the kinematics of the cell body and flagellum. The swimming cell is then modeled as an ellipsoid in Stokes flow, propelled by viscous forces that depend linearly on the velocity of the flagellum. The coefficients (CN and CT) that related normal and tangent forces on the flagellum to corresponding velocity components are estimated from equilibrium requirements. Their values are consistent among all three genotypes and similar to theoretical predictions.

1991 ◽  
Vol 112 (3) ◽  
pp. 441-447 ◽  
Author(s):  
R Kamiya ◽  
E Kurimoto ◽  
E Muto

Two types of Chlamydomonas reinhardtii flagellar mutants (idaA and idaB) lacking partial components of the inner-arm dynein were isolated by screening mutations that produce paralyzed phenotypes when present in a mutant missing outer-arm dynein. Of the currently identified three inner-arm subspecies I1, I2, and I3, each containing two heterologous heavy chains (Piperno, G., Z. Ramanis, E. F. Smith, and W. S. Sale. 1990. J. Cell Biol. 110:379-389), idaA and idaB lacked I1 and I2, respectively. The 13 idA isolates comprised three genetically different groups (ida1, ida2, ida3) and the two idaB isolates comprised a single group (ida4). In averaged cross-section electron micrographs, inner dynein arms in wild-type axonemes appeared to have two projections pointing to discrete directions. In ida1-3 and ida4 axonemes, on the other hand, either one of them was missing or greatly diminished. Both projections were weak in the double mutant ida1-3 x ida4. These observations suggest that the inner dynein arms in Chlamydomonas axonemes are aligned not in a single straight row, but in a staggered row or two discrete rows. Both ida1-3 and ida4 swam at reduced speed. Thus, the inner-arm subspecies missing in these mutants are not necessary for flagellar motility. However, the double mutants ida1-3 x ida4 were nonmotile, suggesting that axonemes with significant defects in inner arms cannot function. The inner-arm dynein should be important for the generation of axonemal beating.


1993 ◽  
Vol 48 (3-4) ◽  
pp. 259-266 ◽  
Author(s):  
Antony R . Crofts ◽  
Irene Baroli ◽  
David Kramer ◽  
Shinichi Taoka

Abstract We have investigated the electron transfer kinetics for reduction of plastoquinone by photo­ system II in six mutant strains of Chlamydomonas reinhardtii by following the decay of the high fluorescence state after flash activation, and compared the separate reactions of the two-electron gate with those of a wild type strain. By analysis of the electron transfer kinetics, and separate measurement of the equilibrium constant for stabilization of the bound semiquinone after one flash, we have been able to deconvolute the contributions of rate constants and equilibrium constants for plastoquinone binding and electron transfer to the overall process. Two mutations, S 264 A and A 251 V, led to a marked slowing of kinetics for reduction of plastoquinone to the bound semiquinone. In S 264 A , the second electron transfer was also slower, but was normal in A 251 V. In mutant G 256 D , the electron transfer kinetics were normal after the first flash, but slowed after the second. In mutants L 257 F , V 219 I, and F 255 Y , the electron transfer kinetics after both flashes were similar to those in wild type. We discuss the results in terms of a model which provides a description of the mechanism of the two-electron gate in terms of measured kinetic and equilibrium constants, and we give values for these parameters in all strains tested.


1984 ◽  
Vol 98 (6) ◽  
pp. 2026-2034 ◽  
Author(s):  
R A Segal ◽  
B Huang ◽  
Z Ramanis ◽  
D J Luck

Mutations at three independent loci in Chlamydomonas reinhardtii result in a striking alteration of cell motility. Mutant cells representing the three mbo loci move backwards only, propelled by a symmetrical "flagellar" type of bending pattern. The characteristic asymmetric "ciliary" type of flagellar bend pattern responsible for forward movement that predominates in wild-type cells is seldom seen in the mutants. This defect in motility was found to be a property of the mutant axonemes themselves: the isolated axonemes, reactivated by addition of ATP, showed exclusively the symmetrical wave form, and the protein composition of these axonemes differed from the wild-type composition. Axonemes obtained from mbo1 , mbo2 , and mbo3 cells were found to be deficient in six polypeptides regularly present in wild type. The mbo2 axonemes were deficient in two additional polypeptides. The polypeptides were identified in autoradiograms of two-dimensional SDS polyacrylamide gel electrophoretograms of 35S- or 32P-labeled axonemes. One of the six polypeptides has previously been identified; it is a component missing in a mutant deficient for inner dynein arms. Of the five axonemal polypeptides newly identified by the mbo mutants, four were shown to be present as phosphoproteins in wild-type axonemes. One of the additional polypeptides deficient in mbo2 axonemes was also shown to be phosphorylated in wild-type axonemes. Detailed ultrastructural analysis of the mbo1 flagella and the mbo1 , mbo2A , and mbo3 axonemes revealed that the mutants specifically lack the beak-like projections found within the B-tubules of outer doublets 5 and 6.


1996 ◽  
Vol 24 (3) ◽  
pp. 398S-398S ◽  
Author(s):  
MÓNICA ONDÁRROA ◽  
FRANCESCA ZITO ◽  
GIOVANNI FINAZZI ◽  
PIERRE JOLIOT ◽  
FRANCIS-ANDRÈ WOLLMAN ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 996
Author(s):  
Jenni Virtanen ◽  
Ruut Uusitalo ◽  
Essi M. Korhonen ◽  
Kirsi Aaltonen ◽  
Teemu Smura ◽  
...  

Increasing evidence suggests that some newly emerged SARS-CoV-2 variants of concern (VoCs) resist neutralization by antibodies elicited by the early-pandemic wild-type virus. We applied neutralization tests to paired recoveree sera (n = 38) using clinical isolates representing the first wave (D614G), VoC1, and VoC2 lineages (B.1.1.7 and B 1.351). Neutralizing antibodies inhibited contemporary and VoC1 lineages, whereas inhibition of VoC2 was reduced 8-fold, with 50% of sera failing to show neutralization. These results provide evidence for the increased potential of VoC2 to reinfect previously SARS-CoV-infected individuals. The kinetics of NAbs in different patients showed similar decline against all variants, with generally low initial anti-B.1.351 responses becoming undetectable, but with anti-B.1.1.7 NAbs remaining detectable (>20) for months after acute infection.


2009 ◽  
Vol 8 (3) ◽  
pp. 245-254 ◽  
Author(s):  
Simon N. Pearson ◽  
John B. Cronin ◽  
Patria A. Hume ◽  
David Slyfield

Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1345-1353
Author(s):  
Amber K Bowers ◽  
Jennifer A Keller ◽  
Susan K Dutcher

Abstract To take advantage of available expressed sequence tags and genomic sequence, we have developed 64 PCR-based molecular markers in Chlamydomonas reinhardtii that map to the 17 linkage groups. These markers will allow the rapid association of a candidate gene sequence with previously identified mutations. As proof of principle, we have identified the genes encoded by the ERY1 and ERY2 loci. Mendelian mutations that confer resistance to erythromycin define three unlinked nuclear loci in C. reinhardtii. Candidate genes ribosomal protein L4 (RPL4) and L22 (RPL22) are tightly linked to the ERY1 locus and ERY2 locus, respectively. Genomic DNA for RPL4 from wild type and five mutant ery1 alleles was amplified and sequenced and three different point mutations were found. Two different glycine residues (G102 and G112) are replaced by aspartic acid and both are in the unstructured region of RPL4 that lines the peptide exit tunnel of the chloroplast ribosome. The other two alleles change a splice site acceptor site. Genomic DNA for RPL22 from wild type and three mutant ery2 alleles was amplified and sequenced and revealed three different point mutations. Two alleles have premature stop codons and one allele changes a splice site acceptor site.


2007 ◽  
Vol 176 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Adam C. Smith ◽  
Won Do Heo ◽  
Virginie Braun ◽  
Xiuju Jiang ◽  
Chloe Macrae ◽  
...  

Members of the Rab guanosine triphosphatase (GTPase) family are key regulators of membrane traffic. Here we examined the association of 48 Rabs with model phagosomes containing a non-invasive mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium). This mutant traffics to lysosomes and allowed us to determine which Rabs localize to a maturing phagosome. In total, 18 Rabs associated with maturing phagosomes, each with its own kinetics of association. Dominant-negative mutants of Rab23 and 35 inhibited phagosome–lysosome fusion. A large number of Rab GTPases localized to wild-type Salmonella-containing vacuoles (SCVs), which do not fuse with lysosomes. However, some Rabs (8B, 13, 23, 32, and 35) were excluded from wild-type SCVs whereas others (5A, 5B, 5C, 7A, 11A, and 11B) were enriched on this compartment. Our studies demonstrate that a complex network of Rab GTPases controls endocytic progression to lysosomes and that this is modulated by S. Typhimurium to allow its intracellular growth.


Sign in / Sign up

Export Citation Format

Share Document