Computational Fluid Dynamics Analysis of Early Embryonic Aortic Arch-Ligation

Author(s):  
Prahlad G. Menon ◽  
William Kowalski ◽  
Kerem Pekkan

Congenital heart disease occurs in 8 out of every 1000 live births in the US and more than half of this population is associated with great artery lesions. Selective remodeling of the paired, bilaterally symmetric embryonic aortic arches (AA) is a crucial stage in vascular morphogenesis and has known association with biomechanical forces [1]. Fetal cardiac interventions are currently explored clinically as an alternative repair technique for congenital anomalies, in-utero [2]. Several computational fluid dynamics (CFD) studies have been performed focusing on subject specific embryonic cardiovascular anatomies [3–5]. These developments could benefit fetal interventions that are planned in-silico before execution. To demonstrate this possibility, we computed the hemodynamic variation and wall shear stress (WSS) patterns resulting from systematic in-silico AA ligation intervention performed on normal chick AA models viz. Hamburger Hamilton (HH) stage 18 and 24 (3 and 4 days, respectively). A unique methodology employing CFD-computed WSS for modeling short-term biological growth response on AA morphogenesis is also presented.

2010 ◽  
Vol 17 (01) ◽  
pp. 45-49
Author(s):  
KYUBONG JUNG ◽  
WOOJIN SONG ◽  
DOO-MAN CHUN ◽  
JUN-CHEOL YEO ◽  
MIN-SAENG KIM ◽  
...  

A micronozzle was applied in nanoparticle deposition system (NPDS) for supersonic deposition. To determine whether suitable behavior of supersonic fluid can be produced or not, computational fluid dynamics (CFD) flow analysis was used. Ni particles were successfully deposited using the fabricated micronozzle in NPDS at room temperature. It was found that shorter micronozzle with larger side profile deposits wide and thick film compared to the deposition using long micronozzle with smaller side profile. These experimental results agree with the simulation results.


Author(s):  
Manas Metar

Abstract: Spoilers have been there in practice since years for the purpose of improving aerodynamics of a car. The pressure drag created at the end of the vehicle, referred to as wake region affects handling of the vehicle. This could be hazardous for the cars at high speeds. By adding a spoiler to the rear of the car reduces that pressure drag and the enhanced downforce helps in better traction. The paper presents aerodynamic analysis of a spoiler through Computational Fluid Dynamics analysis. The spoiler is designed using Onshape software and analyzed through SIMSCALE software. The simulation is carried out by changing angles of attack and velocities. The simulation results of downforce and drag are compared on the basis of analytical method. Keywords: Designing a spoiler, Design and analysis of spoiler, Aerodynamics of spoiler, Aerodynamic analysis of spoiler, Computational fluid dynamics, CFD analysis, CFD analysis of spoiler, Spoiler at variable angles, Types of spoilers, Analytical aerodynamic analysis.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammadreza Salehi ◽  
Nader Pourmahmoud ◽  
Amir Hassanzadeh ◽  
S. Hoseinzadeh ◽  
P.S. Heyns

Purpose Using the computational fluid dynamics (CFD) technique, this paper aims to investigate the influence of key parameters such as throat diameter; the suction ratio on the flow field behaviors such as Mach number; pressure; and temperature. Design/methodology/approach To investigate the effect of throat diameter, it is simulated for 4, 6, 8 and 10 mm as throat diameters. The governing equations have been solved by standard code of Fluent Software together with a compressible 2 D symmetric and turbulence model with the standard k–ε model. First, the influence of the throat diameter is investigated by keeping the inlet mass flow constant. Findings The results show that a place of shock wave creation is changed by changing the throat diameter. The obtained results illustrate that the maximum amount of Mach number is dependent on the throat diameter. It is obtained from the results that for smaller throats higher Mach numbers can be obtained. Therefore, for mixing purposes smaller throats and for exhausting bigger throats seems to be appropriate. Originality/value The obtained numerical results are compared to the existing experimental ones which show good agreement.


2020 ◽  
Vol 10 (4) ◽  
pp. 1448 ◽  
Author(s):  
Benigno Marco Fanni ◽  
Katia Capellini ◽  
Mario Di Leonardo ◽  
Alberto Clemente ◽  
Elisa Cerone ◽  
...  

The left atrial appendage (LAA) is a complex cardiovascular structure which can yield to thrombi formation in patients with non-valvular atrial fibrillation (AF). The study of LAA fluid dynamics together with morphological features should be investigated in order to evaluate the possible connection of geometrical and hemodynamics indices with the stroke risk. To reach this goal, we conducted a morphological analysis of four different LAA shapes considering their variation during the cardiac cycle and computational fluid dynamics (CFD) simulations in AF conditions were carried out. The analysis of main geometrical LAA parameters showed a huger ostium and a reduced motility for the cauliflower and cactus shapes, as well as a lower velocity values from the CFD analysis. Such findings are in line with literature and highlight the importance of coupling dynamics imaging data with CFD calculations for providing information not available at clinical level.


Author(s):  
O. B. Fawehinmi ◽  
P. H. Gaskell ◽  
P. K. Jimack ◽  
N Kapur ◽  
H. M. Thompson

This article presents a complementary experimental and computational investigation of the effect of viscosity and flowrate on the dynamics of drop formation in the dripping mode. In contrast to previous studies, numerical simulations are performed with two popular commercial computational fluid dynamics (CFD) packages, CFX and FLOW-3D, both of which employ the volume of fluid (VOF) method. Comparison with previously published experimental and computational data and new experimental results reported here highlight the capabilities and limitations of the aforementioned packages.


Author(s):  
John Daly ◽  
Ajit Thakker ◽  
Patrick Frawley ◽  
Elvis Sheik Bajeet

This paper deals with the application of Computational Fluid Dynamics (CFD) to the turbulent analysis of the Wells Turbine. The objectives of this work were twofold; firstly to develop and benchmark the 3D CFD model and then to use this model to analyse the airflow through the turbine. The model was analysed as fully turbulent compressible flow using the Fluent™ CFD code. The computational model was first benchmarked against previously published experimental and CFD data for two similar turbines. The computational model accurately predicted the non-dimensional torque and non-dimensional pressure drop, while the efficiency predictions were lower than the experimental results. Predicted location of turbine stall also corresponded well with experimental results. Potential causes for differences between the computational and experimental results are suggested. The computational model was then analysed at both high and low tip Mach number settings and also with and without the tip gap, and these results were discussed.


Author(s):  
John Daly ◽  
Elvis Sheik Bajeet ◽  
Ajit Thakker ◽  
Patrick Frawley

This paper deals with the application of Computational Fluid Dynamics (CFD) to the performance comparison of some proposed blade designs for the Well’s Turbine. The turbines were modelled at typical Reynolds numbers for full scale rigs and the results were found to correlate well with scale predictions from experimental data. Three different turbine designs were analysed, one a 4-bladed rotor and the other two 8-bladed rotors. The only difference between the two 8-bladed rotors was the addition of forward sweep to one. The addition of forward sweep was shown to have little effect on the overall performance of the 8-bladed rotor. The 4-bladed rotor was shown to have the highest efficiency and pressure drop at low flow rates, however it was also shown to have a much smaller operating range than the 8-bladed rotors.


Sign in / Sign up

Export Citation Format

Share Document