Multiscale Experimental and Computational Investigation of Cortical Bone Fracture

Author(s):  
E. M. Feerick ◽  
J. P. McGarry

Previous experimental studies of cortical bone have investigated cortical bone fracture toughness and crack trajectory as a function of microstructural alignment of osteons [1,2]. The dependence of osteon orientation on screw pullout force and crack propagation trajectory during screw pullout has been demonstrated previously by Feerick and McGarry (2012) [3]. The alternate failure modes for longitudinal and transverse screw pullout observed in the latter study are shown in Figure 1. Using an isotropic damage criterion with crack growth was simulated using an element deletion technique. An explicit representation of cortical bone microstructure was required to replicate experimental observations. The use of such a computational scheme for 3D macro-scale applications is not viable given the requirement of explicit representation of the microstructure. Other computational studies of cortical bone have also developed geometric representations of the microstructure of cortical bone to simulate the fracture and establish crack trajectories [4]. Again, upscaling these detailed microstructural geometries in 3D macroscale simulations of fracture would currently be computationally unfeasible.

2008 ◽  
Vol 400-402 ◽  
pp. 513-518 ◽  
Author(s):  
Yong Chang Guo ◽  
Pei Yan Huang ◽  
Yang Yang ◽  
Li Juan Li

The improvement of the load carrying capacity of concrete columns under a triaxial compressive stress results from the strain restriction. Under a triaxial stress state, the capacity of the deformation of concrete is greatly decreased with the increase of the side compression. Therefore, confining the deformation in the lateral orientation is an effective way to improve the strength and ductility of concrete columns. This paper carried out an experimental investigation on axially loaded normal strength concrete columns confined by 10 different types of materials, including steel tube, glass fiber confined steel tube (GFRP), PVC tube, carbon fiber confined PVC tube (CFRP), glass fiber confined PVC tube (GFRP), CFRP, GFRP, polyethylene (PE), PE hybrid CFRP and PE hybrid GFRP. The deformation, macroscopical deformation characters, failure mechanism and failure modes are studied in this paper. The ultimate bearing capacity of these 10 types of confined concrete columns and the influences of the confining materials on the ultimate bearing capacity are obtained. The advantages and disadvantages of these 10 types of confining methods are compared.


Author(s):  
Thomas Willett ◽  
David Josey ◽  
Rick Xing Ze Lu ◽  
Gagan Minhas ◽  
John Montesano

Author(s):  
R.O. Ritchie ◽  
J.H. Kinney ◽  
J.J. Kruzic ◽  
R.K. Nalla
Keyword(s):  

Author(s):  
Ajay Kumar ◽  
Rajesh Ghosh

This paper comprehensively reviews the various experimental and numerical techniques, which were considered to determine the fracture characteristics of the cortical bone. This study also provides some recommendations along with the critical review, which would be beneficial for future research of fracture analysis of cortical bone. Cortical bone fractures due to sports activities, climbing, running, and engagement in transport or industrial accidents. Individuals having different diseases are also at high risk of cortical bone fracture. It has been observed that osteon orientation influences cortical bone fracture toughness and fracture mechanisms. Apart from this, recent studies indicate that fracture parameters of cortical bone also depend on many factors such as age, sex, temperature, osteoporosis, orientation, location, loading condition, strain rate, and storage facility, etc. The cortical bone regains its fracture toughness due to various toughening mechanisms. Owing to these factors, several experimental, clinical, and numerical investigations have been carried out to determine the fracture parameters of the cortical bone. Cortical bone is the dense outer surface of the bone and contributes to 80%–82% of the skeleton mass. Cortical bone experiences load far exceeding body weight due to muscle contraction and the dynamics of motion. It is very important to know the fracture pattern, direction of fracture, location of the fracture, and toughening mechanism of cortical bone. A basic understanding of the different factors that affect the fracture parameters and fracture mechanisms of the cortical bone is necessary to prevent the failure and fracture of cortical bone. This review has summarized the advancement considered in the various experimental techniques and numerical methods to get complete information about the fracture mechanisms of cortical bone.


2014 ◽  
Vol 609-610 ◽  
pp. 521-525
Author(s):  
Bin Xu ◽  
Xiao Yu An ◽  
Liang Chao Li ◽  
Guang Ming Li

Viscous dissipation is the key factor impacting flowing characteristics of polymer melt. In order to study the difference between micro scale and macro scale, experimental studies of viscous dissipation at various shear rate were investigated with several polymers, including PMMA and HDPE, at different temperature when melts flow through 1000μm,500μm,350μm diameter channels of identical aspects ratio in the paper. The results indicate that the temperature rises caused by viscous dissipation increase with increasing shear rate and the temperature rise for some shear rate decreases with increasing melts temperature. The temperature rises decrease significantly with the reduction of the characteristic size of micro channel at the same shear rate. However, the average temperature rises per unit length increase when the character size of channel decreases. This indicates the shear friction gradually increases with the decrease of channel characteristic size. Therefore polymer melt viscous dissipation effects of micro scale dimensions are different from that of macro-scale dimensions.


2017 ◽  
Vol 31 (9) ◽  
pp. 1181-1203 ◽  
Author(s):  
Xueyao Hu ◽  
Hui Guo ◽  
Weiguo Guo ◽  
Feng Xu ◽  
Longyang Chen ◽  
...  

Theoretical and experimental studies on the compressive mechanical behavior of 4-harness satin weave carbon/epoxy composite laminates under in-plane loading are conducted over the temperature range of 298–473 K and the strain rate range of 0.001–1700/s in this article. The stress–strain curves of 4-harness satin weave composites are obtained at different strain rates and temperatures, and key mechanical properties of the material are determined. The deformation mechanism and failure morphology of the samples are observed and analyzed by scanning electron microscope (SEM) micrographs. The results show that the uniaxial compressive mechanical properties of 4-harness satin weave composites are strongly dependent on the temperature but are weakly sensitive to strain rate. The peak stress and elastic modulus of the material have the trend of decrease with the increasing of temperature, and the decreasing trend can be expressed as the functional relationship of temperature shift factor. In addition, SEM observations show that the quasi-static failure mode of 4-harness satin weave composites is shear failure along the diagonal lines of the specimens, while the dynamic failure modes of the material are multiple delaminations and longitudinal splitting, and with the increasing of temperature, its longitudinal splitting is more serious, but the delamination is relatively reduced. A constitutive model with thermomechanical coupling effects is proposed based on the experimental results and the increment theory of elastic–plastic mechanics. The experimental verification and numerical analysis show that the model is shown to be able to predict the finite deformation behavior of 4-harness satin weave composites over a wide range of temperatures.


Sign in / Sign up

Export Citation Format

Share Document