Polymer Nanocomposites for Energy Storage Applications

Author(s):  
Amira B. Meddeb ◽  
Zoubeida Ounaies

High dielectric polymer nanocomposites are promising candidates for energy storage applications. The main criteria of focus are high dielectric breakdown strength, high dielectric constant and low dielectric loss. In this study, we investigate the effect of the addition of TiO2 particles to PVDF matrix on the dielectric constant, breakdown and energy density of the system. The dispersion of the particles is qualified by scanning electron microscopy (SEM). The morphology of the composites is characterized by polarized light microscopy, Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The dielectric properties are measured by a Novocontrol system with an Alpha analyzer. Finally, the breakdown measurements are carried out by a QuadTech hipot tester.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3585
Author(s):  
Xueqing Bi ◽  
Lujia Yang ◽  
Zhen Wang ◽  
Yanhu Zhan ◽  
Shuangshuang Wang ◽  
...  

Three-dimensional BaTiO3 (3D BT)/polyvinylidene fluoride (PVDF) composite dielectrics were fabricated by inversely introducing PVDF solution into a continuous 3D BT network, which was simply constructed via the sol-gel method using a cleanroom wiper as a template. The effect of the 3D BT microstructure and content on the dielectric and energy storage properties of the composites were explored. The results showed that 3D BT with a well-connected continuous network and moderate grain sizes could be easily obtained by calcining a barium source containing a wiper template at 1100 °C for 3 h. The as-fabricated 3D BT/PVDF composites with 21.1 wt% content of 3D BT (3DBT–2) exhibited the best comprehensive dielectric and energy storage performances. An enhanced dielectric constant of 25.3 at 100 Hz, which was 2.8 times higher than that of pure PVDF and 1.4 times superior to the conventional nano–BT/PVDF 25 wt% system, was achieved in addition with a low dielectric loss of 0.057 and a moderate dielectric breakdown strength of 73.8 kV·mm−1. In addition, the composite of 3DBT–2 exhibited the highest discharge energy density of 1.6 × 10−3 J·cm−3 under 3 kV·mm−1, which was nearly 4.5 times higher than that of neat PVDF.


2019 ◽  
Vol 115 (16) ◽  
pp. 163901 ◽  
Author(s):  
Chao Wu ◽  
Zongze Li ◽  
Gregory M. Treich ◽  
Mattewos Tefferi ◽  
Riccardo Casalini ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 612-613
Author(s):  
H-J. Gao ◽  
B. Rafferty ◽  
C.L. Chen ◽  
R.K. Singh ◽  
S.J. Pennycook

The trend of replacing trench and stack capacitors in a dynamic random access memory (DRAM) with a planar configuration has stimulated the development of high dielectric constant materials with reliably low leakage current and high dielectric breakdown strength. In this regard, high dielectric constant materials, such as PbZrxTiyO3(PZT), BaTiO3, SrTiO3, PbTiO3, and BaxSr1-xTiO3, have been extensively investigated as dielectrics in the last few decades. Of these, the sol id-solution quaternary BaxSr1-xTiO3, (BST) combines the high dielectric constant of BaTiO3, with the structural stability of SrTiO3, is one of the most promising materials for DRAM cells in very large-scale integrated circuits. BST shows a paraelectric phase for x<0.7 at room temperature, which provides additional features such as no aging or fatigue effects from ferroelectric domain switching. However, so far, there have been few studies of the interfaces between BST and the substrates, particularly at the atomic-resolution level.


2012 ◽  
Vol 727-728 ◽  
pp. 505-510
Author(s):  
L.P. Silva Neto ◽  
J.O. Rossi ◽  
A.R. Silva

The barium and strontium titanate (BST) ceramics have been used with great success as excellent dielectrics in the construction of high voltage (HV) commercial ceramic capacitors with reduced dimensions because of their high dielectric constant. However, the main point of this paper is to investigate other type of ceramic known as PZT (Lead Zirconate Titanate) normally used as piezoelectric sensors in industrial applications. The idea herein is to use the PZT ceramics as HV dielectrics for applications in high-energy storage systems by de-poling their piezoelectric properties in order to avoid dielectric damage and losses at high frequencies. For this, de-poled PZT-4 ceramic samples (30 mm × 2 mm) were submitted to HV tests, in which their dielectric breakdown strength and dielectric constant variation with the applied voltage were assessed. These results obtained confirmed the use of PZT in applications that require reasonable dielectric constant stability (< 15 %) with voltage and HV dielectric breakdown (40 kV/cm) for compact high-energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document