Bio-Inspired Coupling of Camber and Sweep in Morphing Wings

Author(s):  
Amin Moosavian ◽  
Lawren L. Gamble ◽  
Alexander M. Pankonien ◽  
Daniel J. Inman

This work aims to investigate how bio-inspired morphing wings built with state-of-the-art materials affect the aerodynamics and extend the range of flight conditions. In particular, this study investigates the aerodynamic effects of coupled airfoil and planform sweep morphing. The morphed geometries were chosen to resemble a current morphing design that uses Macro Fiber Composites (MFCs) and Shape Memory Alloy (SMA) wires. The primary mode of camber actuation is achieved using the MFCs which are supplemented using antagonistic SMA wires, forming a hinge ahead of the MFCs. The SMA hinge also allows for bi-directional actuation, resulting in a reflexed airfoil. Numerical simulations were conducted using a Reynolds-averaged-Navier-Stokes (RANS) turbulence model for low-Reynolds-number flow, in addition to wind tunnel experiments. Nine different wing configurations were considered consisting of combinations of 3 sweep angles and 3 airfoil profiles, including unactuated (baseline), monotonic camber actuation, and reflex actuation. These geometries were 3D printed on a high resolution printer. Tests were conducted in a 2 ft. × 2 ft. wind tunnel at the University of Michigan at a flow speed of 10 m/s, consistent with the flow regime expected for this scale of aircraft. The preliminary results suggest a definite improvement in flight performance associated with the proposed coupling.

2017 ◽  
Vol 817 ◽  
pp. 388-405 ◽  
Author(s):  
Qiang Yang ◽  
Lisa Fauci

We study the dynamics and transport of an elastic fibre in a polymeric cellular flow. The macroscopic fibre is much larger than the infinitesimal immersed polymer coils distributed in the surrounding viscoelastic fluid. Here we consider low-Reynolds-number flow using the Navier–Stokes/Fene-P equations in a two-dimensional, doubly periodic domain. The macroscopic fibre supports both tensile and bending forces, and is fully coupled to the viscoelastic fluid using an immersed boundary framework. We examine the effects of fibre flexibility and polymeric relaxation times on fibre buckling and transport as well as the evolution of polymer stress. Non-dimensional control parameters include the Reynolds number, the Weissenberg number, and the elasto-viscous number of the macroscopic fibre. We find that large polymer stresses occur in the fluid near the ends of the fibre when it is compressed. In addition, we find that viscoelasticity hinders a fibre’s ability to traverse multiple cells in the domain.


Author(s):  
Muk Chen Ong ◽  
Lars Erik Holmedal ◽  
Dag Myrhaug

The purpose of this paper is to investigate suspended sediment transport around a marine pipeline near the seabed by solving the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the standard k-ε model. High Reynolds number flow simulations are considered in the present study. The suspended sediments are seeded upstream of the pipeline. Particle trajectories of the suspended sediments downstream of the pipeline have been visualized by using a Lagrangian approach. Effects of the gap (i.e. the normal distance between the pipeline and the seabed) and the sediment weight (i.e. taking into account sediment settling velocity) have been investigated and discussed.


2016 ◽  
Vol 7 ◽  
pp. 58
Author(s):  
Vanessa Saubke ◽  
Rüdiger Höffer

The magnitude and the spatial distribution of wind-induced net pressures (external and internal) on buildings are frequently discussed among research communities and construction industries. This paper deals with this topic based on a case study about an industrial building in Denmark, which was damaged due to the wind impact during a storm when a large part of the roof covering was blown off. In order to detect the reason for the damage the wind-induced loads were studied by i) wind tunnel experiments on the external pressures due to different wind directions, ii) analytical investigations of internal pressure due to envelope porosities and planned openings and iii) numerical analyses for the internal and the external pressure. The Reynolds averaged Navier-Stokes (RANS) method is employed to build a numerical model. The experimental, analytical and numerical results are compared with the indicated characteristic loads from the Eurocode.


Author(s):  
Adnan Anwar ◽  
Mudassar Razzaq ◽  
Liudmila Rivkind

As an example of an aerodynamics prototypical study, we examined a two-dimensional low Reynolds number flow over obstacles immersed in a stream of infinite extent. The Navier Stokes equation is being discretized by non conforming finite element method approach. The resulting discretized nonlinear algebraic system is being solved by using the fixpoint method and the Newton method and multigrid method for the linear sub-problem employed. The magnitude of the uniform upstream velocity under the study of the problem for Reynolds number in the range 1 < Re < 100 and the angle of attack of the upstream velocity at α = -5; 0; 5 degrees performed. Analysis of the resulting drag and lift forces acting on obstacles with respect to the angle of attack of the upstream velocity and the Reynolds number is made. Moreover, the influence of one obstacle on the resulting drag and lift coefficients of other obstacles determined. The results are being presented in a graphical and vector form.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Mengyu Li ◽  
Christopher C. Bernitsas ◽  
Jing Guo ◽  
Hai Sun

Abstract Flow-induced oscillations/vibrations (FIO/V) of cylinders in tandem can be enhanced by proper in-flow spacing to increase hydrokinetic energy harnessing. In a farm of multiple cylinders in tandem, the effect of interference on harnessing efficiency arises. Three years of systematic experiments in the Marine Renewable Laboratory (MRELab) of the University of Michigan, on an isolated cylinder, and two and three cylinders in tandem have revealed that synergistic FIO can enhance oscillations of cylinders in close proximity. Two cylinders in tandem can harness 2.5–13.5 times the hydrokinetic power of one isolated cylinder. Three cylinders in tandem can harness 3.4–26.4 times the hydrokinetic power of one isolated cylinder. Negative impact on the harnessed energy by multiple cylinders, such as the shielding effect for the downstream cylinder/s, is possible. Specifically for the three-cylinder configuration, at a certain flow speed, the decrease in the power of the middle cylinder can be overcome by adjusting its stiffness and/or damping.


2005 ◽  
Author(s):  
Juan P. Pontaza ◽  
Hamn-Ching Chen ◽  
Chia-Rong Chen

Vortex-induced vibrations (VIV) is an important design consideration for marine risers in offshore drilling and production. In an effort to better understand the VIV phenomena, we present numerical simulation results for two-dimensional incompressible flow past freely vibrating multi-cylinder configurations found in offshore engineering. Of interest is the response of the structure for low mass ratio, low damping, and high Reynolds number flow conditions. The governing incompressible Navier-Stokes equations are numerically solved and time-integrated using a local-analytic-based discretization procedure, implemented in conjunction with overset (Chimera) grid capabilities for zonal-based resolution of the flow field.


1982 ◽  
Vol 49 (1) ◽  
pp. 1-9 ◽  
Author(s):  
M. L. Adams ◽  
A. Z. Szeri

Solutions were developed and are shown here for the primary laminar steady flow field that occurs in an incompressible, isoviscous, Newtonian fluid which is contained between two finite parallel disks. One of the disks is made to rotate at constant velocity and the other is held stationary, and either a source or a sink is located concentric to the axis of rotation. The analysis is general, containing all terms of the Navier-Stokes equations for rotationally symmetric flows, and produces a four-parameter family of solutions. The high Reynolds number flow contains multiple cells, arranged along the radius, and the flow appears to be uniquely defined by the boundary condition and the Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document