The Influence of Boundary Conditions on Tip Leakage Flow

Author(s):  
John D. Coull ◽  
Nicholas R. Atkins

Most of the current understanding of tip leakage flows has been derived from detailed cascade experiments. However, the cascade model is inherently approximate since it is difficult to simulate the boundary conditions present in a real machine, particularly the secondary flows convecting from the upstream stator row and the relative motion of the casing and blade. This problem is further complicated when considering the high pressure turbine rotors of aero engines, where the high Mach numbers must also be matched in order to correctly model the aerodynamics and heat transfer. More realistic tests can be performed on high-speed turbines, but the experimental fidelity and resolution achievable in such set-ups is limited. In order to examine the differences between cascade models and real-engine behavior, the influence of boundary conditions on the tip leakage flow in an unshrouded high pressure turbine rotor is investigated using RANS calculations. This study examines the influence of the rotor inlet condition and relative casing motion. A baseline calculation with a simplified inlet condition and no relative endwall motion exhibits similar behavior to cascade studies. Only minor changes to the leakage flow are induced by introducing either a more realistic inlet condition or relative casing motion. However when both of these conditions are applied simultaneously the pattern of leakage flow is very different, with ingestion of flow over much of the early suction surface. The paper explores the physical processes driving this change and the impact on leakage losses and modeling requirements.

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
John D. Coull ◽  
Nicholas R. Atkins

Much of the current understanding of tip leakage flow has been derived from detailed cascade studies. Such experiments are inherently approximate since it is difficult to simulate the boundary conditions that are present in a real machine, particularly the secondary flows convecting from the upstream stator row and the relative motion of the casing and blade. The problem is further complicated when considering the high pressure turbine rotors of aero engines, where the high Mach numbers must also be matched in order to correctly model the aerodynamics and heat transfer of the leakage flow. More engine-representative tests can be performed on high-speed rotating turbines, but the experimental resolution achievable in such setups is limited. In order to examine the differences between cascade and engine boundary conditions, this paper presents a numerical investigation into the impact of inlet conditions and relative casing motion (RCM) on the leakage flow of a high-pressure turbine rotor. The baseline calculation uses a simplified inlet condition and no relative endwall motion, in typical cascade fashion. Only minor changes to the leakage flow are induced by introducing either a more realistic inlet condition or RCM. However, when both of these conditions are applied simultaneously, the pattern of leakage flow is significantly altered, with ingestion of flow over much of the early suction surface. The paper explores the physical processes driving the changes, the impact on performance and the implications for future experimental investigations.


Author(s):  
W. Sanz ◽  
M. Kelterer ◽  
R. Pecnik ◽  
A. Marn ◽  
E. Go¨ttlich

The demand of a further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters which rotate at lower speed. Therefore, it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at a larger diameter without any loss generating separation or flow disturbances. Due to costs and weight this intermediate turbine duct has to be as short as possible. This leads to an aggressive (high diffusion) S-shaped duct geometry. In order to investigate the influence of the blade tip gap height of a preceding rotor on such a high-diffusion duct flow a detailed measurement campaign in the Transonic Test Turbine Facility at Graz University of Technology has been performed. A high diffusion intermediate duct is arranged downstream a high-pressure turbine stage providing an exit Mach number of about 0.6 and a swirl angle of −15 degrees (counter swirl). A low-pressure vane row is located at the end of the duct and represents the counter rotating low pressure turbine at larger diameter. At the ASME 2007, results of these investigations were presented for two different tip gap heights of 1.5% span (0.8 mm) and 2.4% span (1.3 mm). In order to better understand the flow phenomena observed in the intermediate duct a detailed numerical study is conducted. The unsteady flow through the whole configuration is simulated for both gap heights as well as for a rotor with zero gap height. The unsteady data are compared at the stage exit and inside the duct to study the flow physics. The calculation of the zero gap height configuration allows to determine the influence of the tip leakage flow of the preceding rotor on the intermediate turbine duct. It turns out that for this aggressive duct the tip leakage flow has a very positive effect on the pressure recovery.


Author(s):  
Jin-sol Jung ◽  
Okey Kwon ◽  
Changmin Son

The flow leaking over the tip of a high pressure turbine blade generates significant aerodynamic losses as it mixes with the mainstream flow. This study investigates the effect of blade tip geometries on turbine performance with both steady RANS and unsteady URANS analyses. Five different squealer geometries for a high pressure turbine blade have been examined: squealer on pressure side, squealer on suction side, cavity squealer, cavity squealer with pressure side cutback, and cavity squealer with suction side cutback. With the case of the cavity squealer, three different squealer wall thickness are investigated for the wall thickness (w) of 1x, 2x and 4x of the tip gap (G). The unsteady flow analyses using CFX have been conducted to investigate unsteady characteristics of the tip leakage flow and its influence on turbine performances. Through the comparison between URANS analyses, detailed vortex and wake structures are identified and studied at different fidelities. It is found that the over tip leakage flow loss is affected by the tip suction side geometry rather than that of the pressure side geometry. The unsteady results have contributed to resolve the fundamentals of vortex structures and aerodynamic loss mechanisms in a high pressure turbine stage.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Huang Chen ◽  
Yuanchao Li ◽  
Joseph Katz

Experiments in a refractive index-matched axial turbomachine facility show that semicircular skewed axial casing grooves (ACGs) reduce the stall flowrate by 40% but cause a 2.4% decrease in the maximum efficiency. Aiming to elucidate mechanism that might cause the reduced efficiency, stereo-PIV measurements examine the impact of the ACGs on the flow structure and turbulence in the tip region near the best efficiency point (BEP), and compare them to those occurring without grooves and at low flowrates. Results show that the periodic inflow into the groove peaks when the rotor blade pressure side (PS) overlaps with the downstream end of the groove, but diminishes when this end faces the suction side (SS). Entrainment of the PS boundary layer and its vorticity generates a vortical loop at the entrance to the groove, and a “discontinuity” in the tip leakage vortex (TLV) trajectory. During exposure to the SS, the backward tip leakage flow separates at the entrance to the groove, generating a counter-rotating circumferential “corner vortex,” which the TLV entrains into the passage at high flowrates. Interactions among these structures enlarge the TLV and create a broad area with secondary flows and elevated turbulence near the groove's downstream corner. A growing shear layer with weaker turbulence also originates from the upstream corner. The groove also increases the flow angle upstream of the blade tip and varies it periodically. Accordingly, the circulation shed from the blade tip and strength of leakage flow increase near the blade leading edge (LE).


Author(s):  
Kai Zhou ◽  
Chao Zhou

In an unshrouded high-pressure turbine, tip leakage flow results in a loss of efficiency. In this paper, the aerodynamic performance of the tip leakage flow is investigated in a turbine stage by numerical methods. A flat tip and a closed squealer tip combined with a suction side winglet are used for the rotor tips, and the two turbines are named as ‘Flat Configuration’ and ‘Winglet Configuration’. The ability of the CFD methods in predicting the unsteady flow and the tip leakage flow is validated. The steady calculations using a mixing plane between the stator and the rotor are presented first. Then, the unsteady flows of the turbine stage with a flat rotor tip and a winglet rotor tip are simulated by solving Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. Compared with the ‘Flat Configuration’, the ‘Winglet Configuration’ reduces the size of the passage vortex and the tip leakage vortex. A surprising observation is that although the ‘Winglet Configuration’ reduces the size of the tip leakage vortex, its maximum swirl strength of the tip leakage vortex is about 40% higher than that for the ‘Flat Configuration’. The steady calculation shows that the entropy generation for the turbine stage is 12.1% lower with the ‘Winglet Configuration’ than that with the ‘Flat Configuration’. The mixed-out entropy predicted in the unsteady calculation is higher than that of the steady calculation for both tips. The stator casing passage vortex has a periodic effect on the vortex near the tip gap of the rotor. The unsteady interaction of the vortices seems to be beneficial in terms of the loss. As a result, the ‘Winglet Configuration’ produces 9.4% less entropy than the ‘Flat Configuration’, which is lower than that in the case of the steady calculation.


2020 ◽  
Vol 37 (4) ◽  
pp. 399-411
Author(s):  
Zhihua Zhou ◽  
Shaowen Chen ◽  
Songtao Wang

AbstractA new geometry parametric method of winglet-cavity tip has been introduced in the optimization procedure based on three-dimensional steady CFD numerical calculation and analysis. Firstly, the reliability of numerical method and grid independency are studied. Then an aerodynamic optimization is performed in an unshrouded axial high pressure turbine with winglet-cavity tip. The optimum winglet-cavity tip has higher turbine stage efficiency and smaller tip leakage mass flow rate than the cavity tip and flat tip. Compared with the results of cavity tip, the effects of the optimum winglet-cavity tip indicate that the stage efficiency is improved effectively by 0.41% with less reduction of tip leakage mass flow rate. The variation of turbine stage efficiency with tip gap states that the optimum winglet-cavity tip obtains the smallest efficiency change rate ∆η/(∆τ/H). For the optimum winglet-cavity tip, the endwall flow and blade tip leakage flow pattern are used to analysis the physical mechanical of losses. In addition, the effects of pressure-side winglet and suction-side winglet are analyzed respectively by the deformation of the optimum winglet-cavity tip. The numerical results show that the pressure-side winglet reduces the tip leakage flow effectively, and the suction-side winglet shows a great improvement on the turbine stage efficiency.


Author(s):  
Martina Ricci ◽  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Andrea Arnone

Abstract The tip leakage flow in turbine and compressor blade rows is responsible for a relevant fraction of the total loss. It contributes to unsteadiness, and have an important impact on the operability range of compressor stages. Experimental investigations and, more recently, scale-resolving CFD approaches have helped in clarifying the flow mechanism determining the dynamics of the tip leakage vortex. Due to their continuing fundamental role in design verifications, it is important to establish whether RANS/URANS approaches are able to reproduce the effects of such a flow feature, in order to correctly drive the design of the next generation of turbomachinery. Base studies are needed in order to accomplish this goal. In the present work the tip leakage flow in axial compressor rotor blade cascade have been studied. The cascade was tested experimentally in Virginia Tech Low Speed Cascade Wind Tunnel in both stationary and moving endwall configurations. Numerical analyses were performed using the TRAF code, a state-of-the-art in-house-developed 3D RANS/URANS flow solver. The impact of the numerical framework was investigated selecting different advection schemes including a central scheme with artificial dissipation and a high-resolution upwind strategy. In addition, two turbulence models have been used, the Wilcox linear k–ω model and a non-linear eddy viscosity model (Realizable Quadratic Eddy Viscosity Model), which accounts for turbulence anisotropy. The numerical results are scrutinized using the available measurements. A detailed discussion of the vortex evolution inside the blade passage and downstream of the blade trailing edge is presented in terms of streamwise velocity, streamwise vorticity, and turbulent kinetic energy contours. The purpose is to identify guidelines for obtaining the best representation of the vortex dynamics, with the methodologies usually employed in routine design iterations and, at the same time, evidence their weak aspects that need further modelling efforts.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


2004 ◽  
Vol 128 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Nicole L. Key ◽  
Tony Arts

The tip leakage flow characteristics for flat and squealer turbine tip geometries are studied in the von Karman Institute Isentropic Light Piston Compression Tube facility, CT-2, at different Reynolds and Mach number conditions for a fixed value of the tip gap in a nonrotating, linear cascade arrangement. To the best knowledge of the authors, these are among the very few high-speed tip flow data for the flat tip and squealer tip geometries. Oil flow visualizations and static pressure measurements on the blade tip, blade surface, and corresponding endwall provide insight to the structure of the two different tip flows. Aerodynamic losses are measured for the different tip arrangements, also. The squealer tip provides a significant decrease in velocity through the tip gap with respect to the flat tip blade. For the flat tip, an increase in Reynolds number causes an increase in tip velocity levels, but the squealer tip is relatively insensitive to changes in Reynolds number.


Author(s):  
Tian Liang ◽  
Bo Liu ◽  
Stephen Spence ◽  
Liying Jiao

To extend the current understanding of the circumferential groove casing suction applied to a counter-rotating axial flow compressor, the impact of different axial locations of the circumferential suction groove on the characteristics of the tip leakage flow (TLF) and the corresponding physical mechanisms producing the stability enhancement have been studied based on validated numerical simulations. The results show that the optimal location for the suction groove is at around 20% axial chord, which demonstrated a high potential for reducing additional stall mass flow coefficient with about 8.4% increment in the stall margin. After the casing suction groove was applied, the interface between the incoming main flow and TLF was pushed significantly downstream in the second rotor. The blade loading in the region below the groove, the tip leakage flow angle and the reversed axial momentum flux injected into main flow passage through the tip gap were all reduced, which contributed to the stall margin improvement. Detailed analysis of the tip leakage flow structures showed that the TLF originating from different chord locations played different roles in the stall inception process. It was found to be more effective to improve stall margin and adiabatic efficiency by controlling the front part of the TLF, which was most sensitive.


Sign in / Sign up

Export Citation Format

Share Document