Dependence of Gas Transportation in Radial Lip Seals on Oil and Gas

Author(s):  
J. Sugimura ◽  
S. Gondo ◽  
Y. Yamamoto

Experimental studies are made on transportation of gas across radial shaft seals. Gas flow rates are determined with gas chromatography. Gas is pumped in, while gas also leaks at about half of the pump rate. The flow rates increase with shaft speed and oil viscosity, though paraffinic mineral oils allow more gas to move than polyalphaolefin of the same viscosity. The rate also depends on gas. These suggest that gas is conveyed by hydrodynamic flow of oil at the seal lip.

1980 ◽  
Vol 102 (2) ◽  
pp. 82-91
Author(s):  
H. D. Beggs ◽  
J. P. Brill ◽  
E. A. Proan˜o ◽  
C. E. Roman-Lazo

Subsurface safety valves (SSSVs) are installed in offshore oil and gas wells to shut in the wells in case of pressure loss at the wellhead. The selection of these SSSVs requires prediction of the oil and gas flow rates at which the valve will close. A study was performed to improve the design criteria used in the selection. Improved correlations were developed to predict pressure drop across a SSSV as a function of flow rates, and the pressure drop at which a SSSV will close.


Author(s):  
Lotfi Grine ◽  
Abdel-Hakim Bouzid

The present work deals with theoretical and experimental studies of gaseous flow through tight gasket. The paper presents an innovative approach to accurately predict and correlate leak rates of several gases through nano-porous gaskets. The new approach is based on the calculation of the gasket porosity parameters (DH, N) using a model based on a first order slip flow regime. The model assumes the flow to be continuum but employs a slip boundary condition on the channel wall. Experimental measured gas flow rates were performed on gaskets with a microscopic flow rate range and isothermal steady conditions. The flow rate is accurately measured using multi-gas mass spectrometers. The gasket porosity parameters in the developed leakage rate formula were obtained experimentally for a reference gas (helium) for each stress level. In the presence of these statistical properties of a porous media the leak rates for different gases can be predicted with reasonable accuracy. It was found that the approach that considers the slip flow with the first order combined to the molecular flow covers the prediction of flow rates at the microscopy level and down to 10−8 mg/s very well.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Lotfi Grine ◽  
Abdel-Hakim Bouzid

The present work deals with the theoretical and experimental studies of gaseous flow through tight gaskets. The paper presents an innovative approach to accurately predict and correlate leak rates of several gases through nanoporous gaskets. The new approach is based on the calculation of the gasket porosity parameters (D and N) using a model based on a first order slip flow regime. The model assumes the flow to be continuum but employs a slip boundary condition on the leak path wall. Experimental measured gas flow rates were performed on gaskets with a microscopic flow rate range and isothermal steady conditions. The flow rate is accurately measured using multigas mass spectrometers. The gasket porosity parameters used in the developed leakage rate formula were experimentally obtained for a reference gas (helium) for each stress level. In the presence of the statistical properties of a porous gasket, the leak rates for different gases can be predicted with reasonable accuracy. It was found that the approach that considers the slip flow with the first order combined to the molecular flow covers the prediction of flow rates at the microscopy level and down to 10−8 mg/s very well. Tightness hardening is the result of the saturation of the gasket combined porosity parameters or the equivalent thickness of the void layer.


2011 ◽  
Vol 39 (6) ◽  
pp. 1103-1110 ◽  
Author(s):  
J. E. Ritchie ◽  
A. B. Williams ◽  
C. Gerard ◽  
H. Hockey

In this study, we evaluated the performance of a humidified nasal high-flow system (Optiflow™, Fisher and Paykel Healthcare) by measuring delivered FiO2 and airway pressures. Oxygraphy, capnography and measurement of airway pressures were performed through a hypopharyngeal catheter in healthy volunteers receiving Optiflow™ humidified nasal high flow therapy at rest and with exercise. The study was conducted in a non-clinical experimental setting. Ten healthy volunteers completed the study after giving informed written consent. Participants received a delivered oxygen fraction of 0.60 with gas flow rates of 10, 20, 30, 40 and 50 l/minute in random order. FiO2, FEO2, FECO2 and airway pressures were measured. Calculation of FiO2 from FEO2 and FECO2 was later performed. Calculated FiO2 approached 0.60 as gas flow rates increased above 30 l/minute during nose breathing at rest. High peak inspiratory flow rates with exercise were associated with increased air entrainment. Hypopharyngeal pressure increased with increasing delivered gas flow rate. At 50 l/minute the system delivered a mean airway pressure of up to 7.1 cmH2O. We believe that the high gas flow rates delivered by this system enable an accurate inspired oxygen fraction to be delivered. The positive mean airway pressure created by the high flow increases the efficacy of this system and may serve as a bridge to formal positive pressure systems.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 61
Author(s):  
Kenneth P. Mineart ◽  
Cameron Hong ◽  
Lucas A. Rankin

Organogels have recently been considered as materials for transdermal drug delivery media, wherein their transport and mechanical properties are among the most important considerations. Transport through organogels has only recently been investigated and findings highlight an inextricable link between gels’ transport and mechanical properties based upon the formulated polymer concentration. Here, organogels composed of styrenic triblock copolymer and different aliphatic mineral oils, each with a unique dynamic viscosity, are characterized in terms of their quasi-static uniaxial mechanical behavior and the internal diffusion of two unique solute penetrants. Mechanical testing results indicate that variation of mineral oil viscosity does not affect gel mechanical behavior. This likely stems from negligible changes in the interactions between mineral oils and the block copolymer, which leads to consistent crosslinked network structure and chain entanglement (at a fixed polymer concentration). Conversely, results from diffusion experiments highlight that two penetrants—oleic acid (OA) and aggregated aerosol-OT (AOT)—diffuse through gels at a rate inversely proportional to mineral oil viscosity. The inverse dependence is theoretically supported by the hydrodynamic model of solute diffusion through gels. Collectively, our results show that organogel solvent variation can be used as a design parameter to tailor solute transport through gels while maintaining fixed mechanical properties.


Author(s):  
Z. Insepov ◽  
R. J. Miller

Propagation of Rayleigh traveling waves from a gas on a nanotube surface activates a macroscopic flow of the gas (or gases) that depends critically on the atomic mass of the gas. Our molecular dynamics simulations show that the surface waves are capable of actuating significant macroscopic flows of atomic and molecular hydrogen, helium, and a mixture of both gases both inside and outside carbon nanotubes (CNT). In addition, our simulations predict a new “nanoseparation” effect when a nanotube is filled with a mixture of two gases with different masses or placed inside a volume filled with a mixture of several gases with different masses. The mass selectivity of the nanopumping can be used to develop a highly selective filter for various gases. Gas flow rates, pumping, and separation efficiencies were calculated at various wave frequencies and phase velocities of the surface waves. The nanopumping effect was analyzed for its applicability to actuate nanofluids into fuel cells through carbon nanotubes.


1974 ◽  
Vol 14 (01) ◽  
pp. 44-54 ◽  
Author(s):  
Gary W. Rosenwald ◽  
Don W. Green

Abstract This paper presents a mathematical modeling procedure for determining the optimum locations of procedure for determining the optimum locations of wells in an underground reservoir. It is assumed that there is a specified production-demand vs time relationship for the reservoir under study. Several possible sites for new wells are also designated. possible sites for new wells are also designated. The well optimization technique will then select, from among those wellsites available, the locations of a specified number of wells and determine the proper sequencing of flow rates from Those wells so proper sequencing of flow rates from Those wells so that the difference between the production-demand curve and the flow curve actually attained is minimized. The method uses a branch-and-bound mixed-integer program (BBMIP) in conjunction with a mathematical reservoir model. The calculation with the BBMIP is dependent upon the application of superposition to the results from the mathematical reservoir model.This technique is applied to two different types of reservoirs. In the first, it is used for locating wells in a hypothetical groundwater system, which is described by a linear mathematical model. The second application of the method is to a nonlinear problem, a gas storage reservoir. A single-phase problem, a gas storage reservoir. A single-phase gas reservoir mathematical model is used for this purpose. Because of the nonlinearity of gas flow, purpose. Because of the nonlinearity of gas flow, superposition is not strictly applicable and the technique is only approximate. Introduction For many years, members of the petroleum industry and those concerned with groundwater hydrology have been developing mathematical reservoir modeling techniques. Through multiple runs of a reservoir simulator, various production schemes or development possibilities may be evaluated and their relative merits may be considered; i.e., reservoir simulators can be used to "optimize" reservoir development and production. Formal optimization techniques offer potential savings in the time and costs of making reservoir calculations compared with the generally used trial-and-error approach and, under proper conditions, can assure that the calculations will lead to a true optimum.This work is an extension of the application of models to the optimization of reservoir development. Given a reservoir, a designated production demand for the reservoir, and a number of possible sites for wells, the problem is to determine which of those sites would be the best locations for a specified number of new wells so that the production-demand curve is met as closely as possible. Normally, fewer wells are to be drilled than there are sites available. Thus, the question is, given n possible locations, at which of those locations should n wells be drilled, where n is less than n? A second problem, that of determining the optimum relative problem, that of determining the optimum relative flow rates of present and future wells is also considered. The problem is attacked through the simultaneous use of a reservoir simulator and a mixed-integer programming technique.There have been several reported studies concerned with be use of mathematical models to select new wells in gas storage or producing fields. Generally, the approach has been to use a trial-and-error method in which different well locations are assumed. A mathematical model is applied to simulate reservoir behavior under the different postulated conditions, and then the alternatives are postulated conditions, and then the alternatives are compared. Methods that evaluate every potential site have also been considered.Henderson et al. used a trial-and-error procedure with a mathematical model to locate new wells in an existing gas storage reservoir. At the same time they searched for the operational stratagem that would yield the desired withdrawal rates. In the reservoir that they studied, they found that the best results were obtained by locating new wells in the low-deliverability parts of the reservoir, attempting to maximize the distance between wells, and turning the wells on in groups, with the low-delivery wells turned on first.Coats suggested a multiple trial method for determining well locations for a producing field. SPEJ P. 44


Sign in / Sign up

Export Citation Format

Share Document