Predation, prey preference and reproduction of predatory mites Amblydromalus limonicus (Garman), Amblyseius herbicolus (Chant) and Neoseiulus cucumeris (Oudemans) (Mesostigmata: Phytoseiidae) on immature Sericothrips staphylinus Haliday (Thysanoptera: Thripidae), a biocontrol agent of gorse

2019 ◽  
Vol 24 (3) ◽  
pp. 508
Author(s):  
Wendy Lam ◽  
Quentin Paynter ◽  
Zhi-Qiang Zhang

Gorse, Ulex europaeus, is an invasive weed that has serious agricultural, economic and ecological impacts. Although various biological control agents have been released in New Zealand, these have showed no noticeable impact on gorse populations. One such agent, Sericothrips staphylinus, was introduced to New Zealand in 1990 and although laboratory impact studies indicated it was a highly promising gorse biological control agent, it has not been as effective as was hoped. We hypothesized this was due to predation by natural enemies. This study investigated the predation and oviposition rates of three phytoseiid mites (Amblydromalus limonicus, Amblyseius herbicolus, and Neoseiulus cucumeris) that have been found on gorse plants in New Zealand on three S. staphylinus stages (1st instar larvae, 2nd instar larvae, and prepupa) in both choice and non-choice conditions. In non-choice conditions, A. limonicus had the highest predation and oviposition rate across all three immature stages, and N. cucumeris had the lowest. Amblydromalus  limonicus, A. herbicolus, and N. cucumeris all had their highest predation rate when consuming 1st instar larvae, and their lowest predation rate when consuming prepupa. In the choice experiment, all three predatory mite species consumed their highest proportion of 1st instar larvae, and their lowest proportion of prepupae.  The oviposition rate of all three mite species in the choice experiment was similar to the oviposition rate when presented with 1st instar larvae only. The results from this study confirm that A. limonicus, A. herbicolus, and N. cucumeris can predate and reproduce on S. staphylinus 1st instar larvae, 2nd instar larvae, and prepupa. This indicates that predation may be the reason why S. staphylinus is an ineffective biocontrol agent in New Zealand. 

2015 ◽  
Vol 68 ◽  
pp. 446-446
Author(s):  
D.J. Wilson ◽  
P.J. Gerard

Spiny snout mite (Neomolgus capillatus) is a potential biocontrol agent for clover flea (Sminthurus viridis) a white clover pest on dairy farms in warmer and wetter parts of New Zealand In the 1990s this mite was introduced from Brittany France into Tasmania for clover flea control Results during the release programme were highly promising and subsequent anecdotal farmer reports indicate widespread decreases in damage As N capillatus is a predatory mite and already known to attack nontarget organisms habitat specificity will determine whether it could be introduced into New Zealand without risk to native insects To assess this pastures on nine of the original Tasmanian release farms and adjacent nontarget habitats ranging from bush wetlands eucalypt stands to sand dune country were sampled in April 2014 Litter samples were collected heat extracted and mite species identified Neomolgus capillatus was found at effective densities in pastures that had good clover cover Where present it displaced Bdellodes spp mites that are ineffective against clover flea No N capillatus were found in the nontarget habitats all of which lacked clover and contained other predatory mites including Bdellodes spp Therefore the preference by N capillatus for lush pastures makes it an excellent prospect for introduction as a biocontrol agent into clover flea prone regions of New Zealand


2021 ◽  
Vol 74 (1) ◽  
pp. 70-77
Author(s):  
Sonia Lee ◽  
Simon V. Fowler ◽  
Claudia Lange ◽  
Lindsay A. Smith ◽  
Alison M. Evans

Douglas-fir seed chalcid (DFSC) Megastigmus spermotrophus, a small (3 mm long) host-specific seed-predatory wasp, was accidentally introduced into New Zealand in the 1920s. Concern over DFSC reducing Douglas-fir seed production in New Zealand led to an attempt at biocontrol in 1955 with the release, but failed establishment, of the small (2.5 mm long) parasitoid wasp, Mesopolobus spermotrophus. We investigated why DFSC causes little destruction of Douglas-fir seed in New Zealand (usually <20%) despite the apparent absence of major natural enemies. Douglas-fir seed collections from 13 New Zealand sites yielded the seed predator (DFSC) but also potential parasitoids, which were identified using morphology and partial COI DNA sequencing. DFSC destroyed only 0.15% of Douglas-fir seed. All parasitoids were identified as the pteromalid wasp, Mes. spermotrophus, the host-specific biocontrol agent released in 1955. Total parasitism was 48.5%, but levels at some sites approached 90%, with some evidence of density-dependence. The discovery of the parasitoid Mes. spermotrophus could indicate that the biocontrol agent released in 1955 did establish after all. Alternatively, Mes. spermotrophus could have arrived accidentally in more recent importations of Douglas-fir seed. The high level of parasitism of DFSC by Mes. spermotrophus is consistent with DFSC being under successful biological control in New Zealand. Suppression of DFSC populations will benefit commercial Douglas-fir seed production in New Zealand, but it also represents the likely loss of a potential biological control agent for wilding Douglas-fir.


2010 ◽  
Vol 63 ◽  
pp. 282-282
Author(s):  
T.J. Murray ◽  
T.M. Withers

Dicranosterna semipunctata (Coleoptera Chrysomelidae) was detected in New Zealand in 1996 This Australian tortoise beetle has no specific natural enemies in New Zealand and has become a moderate pest of blackwood (Acacia melanoxylon) Although a number of potential biological control agents have been identified in Australia none has been intentionally introduced In January 2009 parasitised eggs of D semipunctata were found in Rotorua Comparison of the emergent parasitoids to hymenoptera held in the NZIC and ANIC confirm that the wasp is from the genus Neopolycystus The taxonomy of this genus is poorly resolved but there were three species of particular interest to which to compare the new specimens The first Neopolycystus sp nr insectifurax was introduced from Perth against Paropsis charybdis in 1989 but did not establish The second Neopolycystus sp was reared from D semipunctata eggs in NSW but was never imported into New Zealand as a biocontrol agent for D semipunctata The third N insectifurax Girault is selfintroduced since 2001 and is well established in New Zealand contributing significantly to the control of P charybdis The parasitoids reared from D semipunctata eggs in Rotorua were not analogous to any of these This new species Neopolycystus sp from Rotorua has since been recorded in the Northland Auckland Waikato and Bay of Plenty regions


1993 ◽  
Vol 83 (3) ◽  
pp. 369-376 ◽  
Author(s):  
M. G. Hill ◽  
D. J. Allan ◽  
R. C. Henderson ◽  
J. G. Charles

AbstractBetween 1987 and 1989, three predatory beetle species (Chilocorus bipustulatus(Linnaeus),C. infernalis(Linnaeus) andC. cacti(Linnaeus)) (Coleoptera: Coccinellidae) and two predatory mite species (Hemisarcoptes coccophagusMeyer andH. cooremaniThomas) were imported and released for the biological control of armoured scale insects (Hemiberlesia rapaxComstock,H. lataniaeSignoret andAspidiotus nerii Bouché) on kiwifruit and shelter trees in New Zealand.Hemisarcoptes coccophagushas established onHemiberlesia lataniaeinfestations on Lombardy poplar (Populus nigravar. Italica) shelter trees at three sites. Detailed studies at one of the release sites over a period spanning nine to 24 months after release, showed that densities ofHemiberlesia lataniaein samples with mites fell to less than 20% of the level in control trees. Assessment of the dispersion characteristics of the mite suggested that the adults are repelled by the presence of other mites on a host.Hemisarcoptes coccophaguscan use two species of New Zealand ladybirds (Scymnus fagusBroun andHalmus chalybeusBoisduval) for phoresy.Hemisarcoptes coccophagusspread naturally to the control trees between 20 and 24 months after release, though the means of dispersal between trees is not known.


2016 ◽  
Vol 78 ◽  
pp. 117-122 ◽  
Author(s):  
S. Hardwick ◽  
C.M. Ferguson ◽  
P. Mccauley ◽  
W. Nichol ◽  
R. Kyte ◽  
...  

Clover root weevil was first discovered in the northern South Island in 2006, and an introduced biocontrol agent the parasitoid wasp Microctonus aethiopoides, was immediately released there in response. As the weevil spread southwards, ongoing releases and natural parasitoid dispersal generally supressed it to economically tolerable levels. However, mild winters in the southern South Island during 2013 and 2014 allowed weevil populations to grow and spread quicker than the parasitoid. This severely impacted white clover production and farm profitability in parts of South Canterbury, Otago and Southland, thus, scientists and industry conducted 18 months of intensive parasitoid releases of ca. 1.1 million parasitised weevils at 6000 sites. The parasitoid rapidly established at all 50 monitored release sites and dispersed from them. The biocontrol agent now occurs at all locations in South Canterbury, Otago, Southland, and elsewhere in New Zealand, where clover root weevil is present. Keywords: biological control, pest spread, parasitic wasp, Sitona obsoletus, Microctonus aethiopoides, South Canterbury, Southland, Otago


2009 ◽  
Vol 62 ◽  
pp. 184-190
Author(s):  
M.C. Watson ◽  
T.M. Withers ◽  
R.L. Hill

The buddleia leaf weevil Cleopus japonicus was released in New Zealand in 2006 as a biological control agent for the weed Buddleja davidii A twophase openfield design was used to confirm laboratory host range and examine nontarget impacts in the field This was the first field trial undertaken in New Zealand and included six nontarget plant species Feeding and dispersal of the agent on the test species and B davidii were compared Cleopus japonicus strongly preferred B davidii Larvae were recorded on Verbascum virgatum and Scrophularia auriculata during the choice stage of the trial Killing the B davidii plants in the second phase resulted in adults feeding on the two exotic species V virgatum and S auriculata Minor exploratory feeding was recorded on the natives Hebe speciosa and Myoporum laetum These results confirm that laboratory tests conducted to assess the safety of this agent for release in New Zealand accurately predicted field host range


2013 ◽  
Vol 40 (2) ◽  
pp. 277-293 ◽  
Author(s):  
R. A. Galbreath ◽  
P. J. Cameron

The introduction of the eleven-spotted ladybird Coccinella undecimpunctata to New Zealand in 1874 has been widely quoted as the first importation of an insect for biological control in New Zealand and one of the first anywhere. However, searches of historical records show no evidence that such an introduction was made or attempted. Instead, there is clear evidence that the presently accepted record arose by a process of cumulative misreporting. An account of discussions in the Entomological Society of London in December 1873 about possible introductions of various beneficial insects to New Zealand was misreported by the American entomologist C. V. Riley, and several subsequent authors restated his version with further modifications and additions. This created the record of the introduction of C. undecimpunctata to New Zealand in 1874 that has been accepted and repeated ever since.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 471
Author(s):  
Angelica M. Reddy ◽  
Paul D. Pratt ◽  
Brenda J. Grewell ◽  
Nathan E. Harms ◽  
Ximena Cibils-Stewart ◽  
...  

Exotic water primroses (Ludwigia spp.) are aggressive invaders in aquatic ecosystems worldwide. To date, management of exotic Ludwigia spp. has been limited to physical and chemical control methods. Biological control provides an alternative approach for the management of invasive Ludwigia spp. but little is known regarding the natural enemies of these exotic plants. Herein the biology and host range of Lysathia flavipes (Boheman), a herbivorous beetle associated with Ludwigia spp. in Argentina and Uruguay, was studied to determine its suitability as a biocontrol agent for multiple closely related target weeds in the USA. The beetle matures from egg to adult in 19.9 ± 1.4 days at 25 °C; females lived 86.3 ± 35.6 days and laid 1510.6 ± 543.4 eggs over their lifespans. No-choice development and oviposition tests were conducted using four Ludwigia species and seven native plant species. Lysathia flavipes showed little discrimination between plant species: larvae aggressively fed and completed development, and the resulting females (F1 generation) oviposited viable eggs on most plant species regardless of origin. These results indicate that L. flavipes is not sufficiently host-specific for further consideration as a biocontrol agent of exotic Ludwigia spp. in the USA and further testing is not warranted.


1928 ◽  
Vol 19 (3) ◽  
pp. 317-323 ◽  
Author(s):  
J. G. Myers
Keyword(s):  

The biology of Rhyssa persuasoria, L., and of Ibalia leucospoides, Hochenw., has already been sketched in a preliminary paper published in this Bulletin (xix, pp. 67–77, pl. iii, 1928) in collaboration with Mr. R. N. Chrystal, of the Imperial Forestry Institute. The following observations were made by the writer chiefly at the Farnham House Laboratory, during the spring and summer of 1928, and are gathered together in view of his departure from England. The work of collecting and rearing supplies of Rhyssa and Ibalia for shipment to New Zealand, for the biological control of Sirex nodilio (juvencus), has been continued on a larger scale. The present notes were made incidentally during this work and are arranged under nearly the same headings as in the previous paper, to which they are supplementary. One error needs correcting. It was stated (on p. 75) that the larch (Larix europaea, D.C.) is indigenous, though actually planted in the Oxford locality mentioned. As a matter of fact, of course, larch, though Palaearctic, is not indigenous to Britain.


Sign in / Sign up

Export Citation Format

Share Document