Focused ion beam patterning of III–V crystals at low temperature: A method for improving the ion-induced defect localization

Author(s):  
M. Schneider ◽  
J. Gierak ◽  
J. Y. Marzin ◽  
B. Gayral ◽  
J. M. Gérard
2003 ◽  
Vol 82 (8) ◽  
pp. 1281-1283 ◽  
Author(s):  
N. W. Liu ◽  
A. Datta ◽  
C. Y. Liu ◽  
Y. L. Wang

2019 ◽  
Vol 221 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Michael K Sly ◽  
Arashdeep S Thind ◽  
Rohan Mishra ◽  
Katharine M Flores ◽  
Philip Skemer

SUMMARY Low-temperature plastic rheology of calcite plays a significant role in the dynamics of Earth's crust. However, it is technically challenging to study plastic rheology at low temperatures because of the high confining pressures required to inhibit fracturing. Micromechanical tests, such as nanoindentation and micropillar compression, can provide insight into plastic rheology under these conditions because, due to the small scale, plastic deformation can be achieved at low temperatures without the need for secondary confinement. In this study, nanoindentation and micropillar compression experiments were performed on oriented grains within a polycrystalline sample of Carrara marble at temperatures ranging from 23 to 175 °C, using a nanoindenter. Indentation hardness is acquired directly from nanoindentation experiments. These data are then used to calculate yield stress as a function of temperature using numerical approaches that model the stress state under the indenter. Indentation data are complemented by uniaxial micropillar compression experiments. Cylindrical micropillars ∼1 and ∼3 μm in diameter were fabricated using a focused ion beam-based micromachining technique. Yield stress in micropillar experiments is determined directly from the applied load and micropillar dimensions. Mechanical data are fit to constitutive flow laws for low-temperature plasticity and compared to extrapolations of similar flow laws from high-temperature experiments. This study also considered the effects of crystallographic orientation on yield stress in calcite. Although there is a clear orientation dependence to plastic yielding, this effect is relatively small in comparison to the influence of temperature.


2006 ◽  
Vol 17 (6) ◽  
pp. 1758-1762 ◽  
Author(s):  
M Catalano ◽  
A Taurino ◽  
M Lomascolo ◽  
A Schertel ◽  
A Orchowski

1995 ◽  
Vol 35 (1-3) ◽  
pp. 208-213 ◽  
Author(s):  
H. Muessig ◽  
Th. Hackbarth ◽  
H. Brugger ◽  
A. Orth ◽  
J.P. Reithmaier ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Elia Scattolo ◽  
Alessandro Cian ◽  
Damiano Giubertoni ◽  
Giovanni Paternoster ◽  
Luisa Petti ◽  
...  

The possibility of integrating plasmonic nanostructures directly on an active device, such as a silicon photodetector, is a challenging task of interest in many applications. Among the available nanofabrication techniques to realize plasmonic nanostructures, Focused Ion Beam (FIB) is surely the most promising, even if it is characterized by certain limitations, such as ion implantation in the substrate. In this work, we demonstrate the direct integration of plasmonic nanostructures directly on an active Si-photodetector by patterning a silver film with FIB. To avoid ion implantation and to therefore guarantee unaltered device behavior, both the patterning parameters and the geometry of the nanostructures were implemented by Montecarlo and Finite-Difference Time-Domain simulations.


2020 ◽  
Vol 21 (22) ◽  
pp. 8753
Author(s):  
Philip Steiner ◽  
Othmar Buchner ◽  
Ancuela Andosch ◽  
Gerhard Wanner ◽  
Gilbert Neuner ◽  
...  

Low temperature stress has a severe impact on the distribution, physiology, and survival of plants in their natural habitats. While numerous studies have focused on the physiological and molecular adjustments to low temperatures, this study provides evidence that cold induced physiological responses coincide with distinct ultrastructural alterations. Three plants from different evolutionary levels and habitats were investigated: The freshwater alga Micrasterias denticulata, the aquatic plant Lemna sp., and the nival plant Ranunculus glacialis. Ultrastructural alterations during low temperature stress were determined by the employment of 2-D transmission electron microscopy and 3-D reconstructions from focused ion beam–scanning electron microscopic series. With decreasing temperatures, increasing numbers of organelle contacts and particularly the fusion of mitochondria to 3-dimensional networks were observed. We assume that the increase or at least maintenance of respiration during low temperature stress is likely to be based on these mitochondrial interconnections. Moreover, it is shown that autophagy and degeneration processes accompany freezing stress in Lemna and R. glacialis. This might be an essential mechanism to recycle damaged cytoplasmic constituents to maintain the cellular metabolism during freezing stress.


Sign in / Sign up

Export Citation Format

Share Document