Application of focused ion beam system as a defect localization and root cause analysis tool

Author(s):  
C.C. Ooi ◽  
K.H. Siek ◽  
K.S. Sim
Author(s):  
C.C. Ooi ◽  
K.H. Siek ◽  
K.S. Sim

Abstract Focused ion beam system has been widely used as a critical failure analysis tool as microprocessor technology advances at a ramping speed. It has become an essential step in failure analysis to reveal physical defects post electrical fault isolation. In this highly competitive and challenging environment prevalent today, failure analysis throughput time is of utmost important. Therefore quick, efficient and reliable physical failure analysis technique is needed to avoid potential issues from becoming bigger. This paper will discuss the applications of FIB as a defect localization and root cause determination tool through the passive charge contrast technique and pattern FIB analysis.


Author(s):  
Terence Kane ◽  
Yun Yu Wang

Abstract For 22nm and below technologies which involve as many as fifteen back end of the line (BEOL) metallization levels, these leading edge technology nodes pose real challenges in defect localization and root cause analysis. Due to scaling, the reduction in copper land cross section area is accompanied by increased current density and electromigration failure rates. Time to Dielectric Defect Breakdown (TDDB) shows an increase in fallout with successive technology node from 32nm and below. Similarly, the reduced dielectric thickness increases the electric field stress prompting the necessity for porous, ultra low k dielectric (ULK) films. Defect localization is difficult due to the complexity of these multiple metal layers along with the presence of the porous, low k dielectric films which exhibit shrinkage or void formation when exposed to an e-beam/FIB ion beam > 1keV. Due to the porosity of these ULK dielectric films, they are especially susceptible to gallium ion implantation. It has been reported elsewhere that suppressing copper diffusion at the copper land/cap interface can be achieved by depositing a thin layer of CoWP and doping the copper seed layer with manganese [15, 16, 17]. However, a method for analytically confirming that these approaches for suppressing the copper diffusion do not affect TDDB performance/electromigration behavior must be demonstrated.


Author(s):  
P. Tangyunyong ◽  
A.Y. Liang ◽  
A.W. Righter ◽  
D.L. Barton ◽  
J.M. Soden

Abstract Fluorescent microthermal imaging (FMI) involves coating a sample surface with a thin fluorescent film that, upon exposure to UV light source, emits temperature-dependent fluorescence [1-7]. The principle behind FMI was thoroughly reviewed at the ISTFA in 1994 [8, 9]. In two recent publications [10,11], we identified several factors in film preparation and data processing that dramatically improved the thermal resolution and sensitivity of FMI. These factors include signal averaging, the use of base mixture films, film stabilization and film curing. These findings significantly enhance the capability of FMI as a failure analysis tool. In this paper, we show several examples that use FMI to quickly localize heat-generating defects ("hot spots"). When used with other failure analysis techniques such as focused ion beam (FIB) cross sectioning and scanning electron microscope (SEM) imaging, we demonstrate that FMI is a powerful tool to efficiently identify the root cause of failures in complex ICs. In addition to defect localization, we use a failing IC to determine the sensitivity of FMI (i.e., the lowest power that can be detected) in an ideal situation where the defects are very localized and near the surface.


2021 ◽  
Author(s):  
David A Paz ◽  
Jean A Thurber ◽  
Cynthia L Judy ◽  
Timothy M Quast

ABSTRACT Intrusive leadership is a method that looks for signs that might indicate a problem within or outside of the workplace that can affect a member’s performance and, subsequently, the mission. Our scenario demonstrates how intrusive leadership can identify potential problems which, when coupled with accountability, can prevent more significant complications.


Author(s):  
Jane Y. Li ◽  
Chuan Zhang ◽  
John Aguada ◽  
Christopher Nemirow ◽  
Howard Marks

Abstract This paper demonstrates a methodology for chip level defect localization that allows complex logic nets to be approached from multiple perspectives during failure analysis of modern flip-chip CMOS IC devices. By combining chip backside deprocessing with site-specific plasma Focused Ion Beam (pFIB) low angle milling, the area of interest in a failure IC device is made accessible from any direction for nanoprobing and Electron Beam Absorbed Current (EBAC) analysis. This methodology allows subtle defects to be more accurately localized and analyzed for thorough root-cause understanding.


Author(s):  
Michael Schmidt ◽  
Larry Dworkin ◽  
Christopher Hess ◽  
Michele Squcciarini ◽  
Shia Yu ◽  
...  

Abstract The ability to rapidly perform root cause analysis (RCA) on yield limiting defects is critical to a fab’s ramp. Here we present two methodologies for RCA using specially designed high density test structure arrays and a FIB/SEM DualBeam. These methodologies have been proven to identify the root cause of both hard and soft electrical failures. Correlation between electrical test results and the yield-impacting defects are presented.


2013 ◽  
Vol 3 (3) ◽  
Author(s):  
Hari Agung Yuniarto ◽  
Annisa Dewi Akbari ◽  
Nur Aini Masruroh

<p>Diagram Fishbone (tulang ikan), atau biasa pula disebut ishikawa diagram ataupun cause effect<br />diagram, adalah salah satu dari root cause analysis tools yang paling populer di kalangan praktisi industri<br />untuk melakukan quality improvement mendasarkan pada usaha mengenali akar penyebab terjadinya variasi<br />pada quality characteristics tertentu yang ingin dicapai. Meski telah banyak dipakai di dunia industri,<br />disayangkan tool ini menderita kelemahan karena tidak memfasilitasi analisa korelasi antar potential root<br />causes dari masing-masing kategori yang ada (5M1E - man machine method measurement material<br />environment), selain tentu saja penyajian datanya yang hanya kualitatif. Kelemahan ini diyakini menjadi<br />kontributor utama penyebab kegagalan fishbone diagram dalam mengenali root causes yang berupa sumber<br />variasi common cause dan hanya mampu mengenali yang berasal dari sumber variasi special cause. Bertolak<br />belakang dengan karakteristik special cause variations, common cause variations adalah variasi yang terjadi<br />pada quality characteristics tertentu yang ingin dicapai di mana kemunculannya tidak mudah teridentifikasi<br />dan jikapun berhasil dikenali akan sulit dihilangkan karena sifatnya yang seolah adalah merupakan bagian<br />dari sistem (embedded in a system), cenderung berakar penyebab berupa soft factors serta kemunculannya yang<br />tidak random namun tersamar dalam pola tertentu.<br />Penelitian ini bertujuan melakukan improvement pada kelemahan yang terdapat di fishbone diagram<br />dengan mengadopsi kelebihan yang dimiliki oleh bayesian network agar mampu mengenali root causes yang<br />merupakan common cause variations. Kelebihan bayesian network mengatasi kekurangan fishbone diagram,<br />demikian pula sebaliknya. Oleh karena itu, analisa dilakukan terhadap fishbone diagram dan bayesian network<br />untuk mengenali characteristics dan kelebihan/kekurangannya. Hasil dari analisa tersebut mengarahkan pada<br />sifat-sifat komplementer dari keduanya yang diyakini mampu mengisi gap pada fishbone diagram.<br />Mendasarkan padanya, dikembangkan sebuah model untuk mengintegrasikan konsep serta sifat komplementer<br />yang dimiliki bayesian network dan fishbone diagram. Model ini merepresentasikan metodologi baru dalam<br />root cause analysis, bayes-fishbone. Metodologi yang dikembangkan ini kemudian diujikan ke sebuah case<br />study company untuk melihat applicability-nya.<br />Hasil dari penelitian ini menunjukkan bahwa metodologi bayes-fishbone yang dikembangkan terbukti<br />telah valid mampu merepresentasikan kondisi probabilitas produk cacat sebenarnya pada case study company<br />dengan prosentase perbedaan nilai yang ditunjukkan antara model yang dikembangkan dengan kondisi aktual<br />yang besarnya tidak signifikan yaitu kurang dari 1 % (0,9597%). Dengan menerapkan metode contructive<br />research approach, terbukti pula bahwa metodologi bayes-fishbone berhasil lolos weak-market test yang<br />menunjukkan bahwa metodologi yang dikembangkan applicable pada case study company atau perusahaan lain<br />yang sejenis characteristics dan production process-nya.</p>


Sign in / Sign up

Export Citation Format

Share Document