Key technologies in lower submicron lithography: Ultimate super resolution imaging system and chemically amplified resist using the self-solubility acceleration effect

Author(s):  
Makoto Nakase
Author(s):  
Binming Liang ◽  
Xiao Huang ◽  
Jihong Zheng

Abstract Photonic crystal (PC) not only breaks through the diffraction limit of traditional lenses but also can realize super-resolution imaging. Improving the resolution is the key task of PC imaging. The main work of this paper is to use a graded-index Photonic crystal (GPC) flat lens to improve the image resolution. An air-hole type two-dimensional (2D) GPC structure based on silicon medium is proposed in this paper. Numerical simulations through RSoft reveal that when the medium in the imaging area is air, the full width at half maximum (FWHM) value of a single image reaches 0.362λ. According to the Rayleigh criterion, the images of two point sources 0.57λ apart can also be distinguished. In the imaging system composed of cedar oil and GPC flat lens, the FWHM value of a single image reaches 0.34λ. In addition, the images of multiple point sources 0.49λ apart can still be distinguished.


2018 ◽  
Author(s):  
Robin Van den Eynde ◽  
Alice Sandmeyer ◽  
Wim Vandenberg ◽  
Sam Duwé ◽  
Wolfgang Hübner ◽  
...  

AbstractSuper-Resolution (SR) fluorescence microscopy is typically carried out on high-end research microscopes. Super-resolution Optical Fluctuation Imaging (SOFI) is a fast SR technique capable of live-cell imaging, that is compatible with many wide-field microscope systems. However, especially when employing fluorescent proteins, a key part of the imaging system is a very sensitive and well calibrated camera sensor. The substantial costs of such systems preclude many research groups from employing super-resolution imaging techniques.Here, we examine to what extent SOFI can be performed using a range of imaging hardware comprising different technologies and costs. In particular, we quantitatively compare the performance of an industry-grade CMOS camera to both state-of-the-art emCCD and sCMOS detectors, with SOFI-specific metrics. We show that SOFI data can be obtained using a cost-efficient industry-grade sensor, both on commercial and home-built microscope systems, though our analysis also readily exposes the merits of the per-pixel corrections performed in scientific cameras.


2020 ◽  
Vol 69 (13) ◽  
pp. 134201
Author(s):  
Yang Song ◽  
Xi-Bin Yang ◽  
Bing Yan ◽  
Chi Wang ◽  
Jian-Mei Sun ◽  
...  

2018 ◽  
Author(s):  
Daisuke Takao ◽  
Shohei Yamamoto ◽  
Daiju Kitagawa

SUMMARYIn each cell cycle, centrioles are duplicated to produce a single copy of each pre-existing centriole. At the onset of centriole duplication, the master regulator Polo-like kinase 4 (Plk4) undergoes a dynamic change in its spatial pattern on the periphery of the pre-existing centriole, forming a single duplication site. However, the significance and mechanisms of this pattern transition remain largely unknown. Using super-resolution imaging, we found that centriolar Plk4 exhibits periodic discrete patterns resembling pearl necklaces, frequently with single prominent foci. We constructed mathematical models that simulated the pattern formation of Plk4 to gain insight into the discrete ring patterns. The simulations incorporating the self-organization properties of Plk4 successfully generated the experimentally observed patterns. We therefore propose that the self-patterning of Plk4 is crucial for the regulation of centriole duplication. These results, defining the mechanisms of self-organized regulation, provide a fundamental principle for understanding centriole duplication.


2019 ◽  
Vol 218 (11) ◽  
pp. 3537-3547 ◽  
Author(s):  
Daisuke Takao ◽  
Shohei Yamamoto ◽  
Daiju Kitagawa

In each cell cycle, centrioles are duplicated to produce a single copy of each preexisting centriole. At the onset of centriole duplication, the master regulator Polo-like kinase 4 (Plk4) undergoes a dynamic change in its spatial pattern around the preexisting centriole, forming a single duplication site. However, the significance and mechanisms of this pattern transition remain unknown. Using super-resolution imaging, we found that centriolar Plk4 exhibits periodic discrete patterns resembling pearl necklaces, frequently with single prominent foci. Mathematical modeling and simulations incorporating the self-organization properties of Plk4 successfully generated the experimentally observed patterns. We therefore propose that the self-patterning of Plk4 is crucial for the regulation of centriole duplication. These results, defining the mechanisms of self-organized regulation, provide a fundamental principle for understanding centriole duplication.


2010 ◽  
Author(s):  
Sang Wook Park ◽  
Joonyoung Chang ◽  
Jongseong Choi ◽  
Moon Gi Kang

Sign in / Sign up

Export Citation Format

Share Document