Silicon structures for in situ characterization of atomic force microscope probe geometry

Author(s):  
K. F. Jarausch
2021 ◽  
Vol 2086 (1) ◽  
pp. 012205
Author(s):  
M A Ryabova ◽  
D A Antonov ◽  
A V Kruglov ◽  
I N Antonov ◽  
D O Filatov ◽  
...  

Abstract We report on the application of Contact Scanning Capacitance Microscopy (CSCM) to trace the growth of an individual Ni filament in a ZrO2(Y) film on a Ni sublayer (together with a conductive Atomic Force Microscope probe composing a nanometer-sized virtual memristor). An increasing of the filament length in the course of electro-forming results in an increasing of the capacitance between the probe and the sample, which can be detected by CSCM technique. This way, the filament growth can be monitored in real time in situ.


2013 ◽  
Vol 22 ◽  
pp. 85-93
Author(s):  
Shuang Yi Liu ◽  
Min Min Tang ◽  
Ai Kah Soh ◽  
Liang Hong

In-situ characterization of the mechanical behavior of geckos spatula has been carried out in detail using multi-mode AFM system. Combining successful application of a novel AFM mode, i.e. Harmonix microscopy, the more detail elastic properties of spatula is brought to light. The results obtained show the variation of the mechanical properties on the hierarchical level of a seta, even for the different locations, pad and stalk of the spatula. A model, which has been validated using the existing experimental data and phenomena as well as theoretical predictions for geckos adhesion, crawling and self-cleaning of spatulae, is proposed in this paper. Through contrast of adhesive and craw ability of the gecko on the surfaces with different surface roughness, and measurement of the surface adhesive behaviors of Teflon, the most effective adhesion of the gecko is more dependent on the intrinsic properties of the surface which is adhered.


2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


2007 ◽  
Vol 33 (10) ◽  
pp. 889-892 ◽  
Author(s):  
M. S. Dunaevskii ◽  
A. N. Titkov ◽  
S. Yu. Larkin ◽  
A. B. Speshilova ◽  
S. E. Aleksandrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document