β-Ga2O3 Schottky diodes based strain gauges with high resistance, large gauge factor, and high operating temperature

Author(s):  
Bo-You Liu ◽  
Jian V. Li
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjie Yan ◽  
Huei-Ru Fuh ◽  
Yanhui Lv ◽  
Ke-Qiu Chen ◽  
Tsung-Yin Tsai ◽  
...  

AbstractThere is an emergent demand for high-flexibility, high-sensitivity and low-power strain gauges capable of sensing small deformations and vibrations in extreme conditions. Enhancing the gauge factor remains one of the greatest challenges for strain sensors. This is typically limited to below 300 and set when the sensor is fabricated. We report a strategy to tune and enhance the gauge factor of strain sensors based on Van der Waals materials by tuning the carrier mobility and concentration through an interplay of piezoelectric and photoelectric effects. For a SnS2 sensor we report a gauge factor up to 3933, and the ability to tune it over a large range, from 23 to 3933. Results from SnS2, GaSe, GeSe, monolayer WSe2, and monolayer MoSe2 sensors suggest that this is a universal phenomenon for Van der Waals semiconductors. We also provide proof of concept demonstrations by detecting vibrations caused by sound and capturing body movements.


2014 ◽  
Author(s):  
H. Lutz ◽  
R. Breiter ◽  
H. Figgemeier ◽  
T. Schallenberg ◽  
W. Schirmacher ◽  
...  

2021 ◽  
Author(s):  
Pradeep Lall ◽  
Jinesh Narangaparambil ◽  
Tony Thomas ◽  
Kyle Schulze

Abstract Printed electronics has found new applications in wearable electronics owing to the opportunities for integration, and the ability of sustaining folding, flexing and twisting. Continuous monitoring necessitates the production of sensors, which include temperature, humidity, sweat, and strain sensors. In this paper, a process study was performed on the FR4 board while taking into account multiple printing parameters for the direct-write system. The process parameters include ink pressure, print speed, and stand-off height, as well as their effect on the trace profile and print consistency using white light interferometry analysis. The printed traces have also been studied for different sintering conditions while keeping the FR4 board’s temperature limit in mind. The paper also discusses the effect of sintering conditions on mechanical and electrical properties, specifically shear load to failure and resistivity. The data from this was then used to print strain gauges and compared them to commercially available strain gauges. By reporting the gauge factor, the printed strain gauge has been standardized. The conductive ink’s strain sensing capabilities will be studied under tensile cyclic loading (3-point bending) at various strain rates and maximum strains. Long-term performance testing will be carried out using cyclic tensile loads.


2010 ◽  
Author(s):  
A. G. Unil Perera ◽  
S. G. Matsik ◽  
M. S. Shishodia ◽  
R. C. Jayasinghe

2018 ◽  
Vol 113 (2) ◽  
pp. 021101 ◽  
Author(s):  
David Z. Ting ◽  
Alexander Soibel ◽  
Arezou Khoshakhlagh ◽  
Sir B. Rafol ◽  
Sam A. Keo ◽  
...  

2017 ◽  
Vol 2017 (HiTEN) ◽  
pp. 000226-000233
Author(s):  
Catherine Shearer

Abstract Interconnect materials for high operating temperature applications are becoming a limiting factor within the chain of materials. While materials such as capacitor dielectrics, semiconductor platforms (e.g. SiC), and baseplate materials (e.g. SiN composites) have paved a pathway to deploying electronics in high operating temperature applications, interconnect materials are a clearly identified weak link. As is often the case in advancements in technology, the materials technologies that were the bottlenecks to advancement give way to new solutions that create new bottlenecks in the material supply chain. Rather than a fluid march towards advancements in new frontiers in electronics, the high operating temperature sphere, like much of advanced electronic, suffers from a ‘slip-fault’ mode of development where advances occur in one segment while others lag behind creating drag on implementation. For high operating temperature applications the available interconnect solutions are becoming the jarring stop to the smooth tectonic shift. Current solutions are diverse: high-lead, gold-based, and nano-sintering and its hybrids, but none are ideal. Even disregarding he toxicity of lead and the ongoing limbo of its regulatory status, the operating temperatures of the high-lead solders are on the low end of the requirements for future harsh environment electronics applications; whereas, the gold and nano-based alternatives have significant cost barriers - either at from the constituent materials perspective or the required investment in new processes. There is also the concern about the assessment of the action of nanomaterials in the waste stream due to their fundamentally different surface reactivity in a variety of situations. Reliance on conventional, solder-type interconnection structures, regardless of composition, introduces the perennial problem of the growth of the interfacial phases due to the essentially unlimited volume of the bulk solder material. The changes in the interfacial structure with additional thermal work - as is provided by high operating temperature applications - creates an environment that is ripe for growth of a variety of failure mechanisms. These failure mechanisms are often related to the uncontrolled laminar growth of intermetallic phases at the interfaces and the mechanical characteristics of these intermetallic phases in comparison with the materials joined and the bulk constituent material of the solder. An alternative class of interconnect materials, transient liquid phase sintering (TLPS) pastes, introduce a joint microstructure that is homogeneous throughout. The interfacial metallurgical reactions with the solderable surfaces are fundamentally similar to those that occur throughout the bulk of the joint. A reactant metal is included in the composition. This reactant metal, most often copper, reacts with and converts the bulk tin in the bulk of the solder interconnect to alloy structures with melting points well above the operating temperatures currently contemplated. At the conclusion of the joining process, which is generally a near drop-in for existing solder reflow processes, there is no large source of unreacted metal (e.g. Sn) that can continue to drive major microstructural changes with the continued thermal work provided by the application environment. For this reason the joints are homogeneous and do not have the free reactants necessary to drive substantial changes in joint morphology during cycling and use conditions. In this paper, we will explore the differences between TLPS joints and solder-type joints with the anticipated thermal work that would be introduced in a high operating temperature environment.


Sign in / Sign up

Export Citation Format

Share Document