Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz‐Mie theory

1996 ◽  
Vol 35 (4) ◽  
pp. 946 ◽  
Author(s):  
Denis Lebrun
PIERS Online ◽  
2010 ◽  
Vol 6 (7) ◽  
pp. 636-639
Author(s):  
Toshiyuki Nakamiya ◽  
Fumiaki Mitsugi ◽  
Shota Suyama ◽  
Tomoaki Ikegami ◽  
Yoshito Sonoda ◽  
...  

1996 ◽  
Vol 150 ◽  
pp. 409-413
Author(s):  
Patrick P. Combet ◽  
Philippe L. Lamy

AbstractWe have set up an experimental device to optically study the scattering properties of dust particles. Measurements over the 8 — 174° interval of scattering angles are performed on a continuously flowing dust loaded jet illuminated by a polarized red HeNe laser beam. The scattering is averaged over the population of the dust particles in the jet, which can be determined independently, and give the “volume scattering function” for the two directions of polarization directly. While results for spherical particles are in good agreement with Mie theory, those for arbitrary particles show conspicuous deviations.


Author(s):  
Jia Jie Wang ◽  
Lu Han ◽  
Yi Ping Han ◽  
Gerard Gouesbet ◽  
Xuecheng Wu ◽  
...  

2021 ◽  
Vol 31 (5) ◽  
pp. 1-6
Author(s):  
Jianyi Jiang ◽  
S. Imam Hossain ◽  
T. Abiola Oloye ◽  
Yavuz Oz ◽  
Shaon Barua ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pavel Malakhovsky ◽  
Dmitry Murausky ◽  
Dmitry Guzatov ◽  
Sergey Gaponenko ◽  
Mikhail Artemyev

Abstract We examined systematically how self-assembled monolayers (SAMs) of different mercaptoacids affect the spectral shift of the localized surface plasmon resonance in silver nanoplates and nanospheres. We observed a clear trend in the magnitude of a redshift with a molecular length or the SAM thickness within a homologous series of aliphatic mercaptoacids: the thicker shell the stronger the red shift. Using classic Mie theory for plasmonic core-dielectric shell spheres and oblate spheroids we developed the method for determination of a pseudo-refractive index in SAM of different molecules and obtained a good correlation with the reference refractive indices for bulk long-chain aliphatic acids, but only in case of silver nanoplates. Calculations for silver core–shell nanospheres gave overestimated values of refractive index perhaps due to restrictions of Mie theory on the minimum particle size.


2020 ◽  
Vol 9 (1) ◽  
pp. 1137-1146
Author(s):  
Qingli Zheng ◽  
Pengfei Dong ◽  
Zhiqiang Li ◽  
Ying Lv ◽  
Meiwen An ◽  
...  

AbstractBraided composite stent (BCS), woven with nitinol wires and polyethylene terephthalate (PET) strips, provides a hybrid design of stent. The mechanical performance of this novel stent has not been fully investigated yet. In this work, the influence of five main design factors (number of nitinol wires, braiding angle, diameter of nitinol wire, thickness and stiffness of the PET strip) on the surface coverage, radial strength, and flexibility of the BCS were systematically studied using computational models. The orthogonal experimental design was adopted to quantitatively analyze the sensitivity of multiple factors using the minimal number of study cases. Results have shown that the nitinol wire diameter and the braiding angle are two most important factors determining the mechanical performance of the BCS. A larger nitinol wire diameter led to a larger radial strength and less flexibility of the BCS. A larger braiding angle could provide a larger radial strength and better flexibility. In addition, the impact of the braiding angle decreased when the stent underwent a large deformation. At the same time, the impact of the PET strips increased due to the interaction with nitinol wires. Moreover, the number of PET strips played an important role in the surface coverage. This study could help understand the mechanical performance of BCS stent and provides guidance on the optimal design of the stent targeting less complications.


Sign in / Sign up

Export Citation Format

Share Document