scholarly journals Braided composite stent for peripheral vascular applications

2020 ◽  
Vol 9 (1) ◽  
pp. 1137-1146
Author(s):  
Qingli Zheng ◽  
Pengfei Dong ◽  
Zhiqiang Li ◽  
Ying Lv ◽  
Meiwen An ◽  
...  

AbstractBraided composite stent (BCS), woven with nitinol wires and polyethylene terephthalate (PET) strips, provides a hybrid design of stent. The mechanical performance of this novel stent has not been fully investigated yet. In this work, the influence of five main design factors (number of nitinol wires, braiding angle, diameter of nitinol wire, thickness and stiffness of the PET strip) on the surface coverage, radial strength, and flexibility of the BCS were systematically studied using computational models. The orthogonal experimental design was adopted to quantitatively analyze the sensitivity of multiple factors using the minimal number of study cases. Results have shown that the nitinol wire diameter and the braiding angle are two most important factors determining the mechanical performance of the BCS. A larger nitinol wire diameter led to a larger radial strength and less flexibility of the BCS. A larger braiding angle could provide a larger radial strength and better flexibility. In addition, the impact of the braiding angle decreased when the stent underwent a large deformation. At the same time, the impact of the PET strips increased due to the interaction with nitinol wires. Moreover, the number of PET strips played an important role in the surface coverage. This study could help understand the mechanical performance of BCS stent and provides guidance on the optimal design of the stent targeting less complications.

2019 ◽  
Vol 19 (06) ◽  
pp. 1950038 ◽  
Author(s):  
QINGLI ZHENG ◽  
HOZHABR MOZAFARI ◽  
ZHIQIANG LI ◽  
LINXIA GU ◽  
MEIWEN AN ◽  
...  

In this paper, the mechanical performance of braided nitinol stents was systematically studied to provide guidelines for optimum stent designs. The influences of braiding patterns, braiding angles, wire diameters, and strand numbers on the mechanical behavior of the stent in terms of crimping strain, radial strength, longitudinal flexibility, and stability were characterized utilizing finite element method. Our results have shown that the two key design factors of braided stents are the braiding angle and wire diameter. A smaller braiding angle can increase radial stiffness and have better longitudinal flexibility and can maintain the stent stability. The wire diameter has less influence on the radial stiffness than the braiding angle, but the longitudinal flexibility is most sensitive to the wire diameter. The strand number is directly proportional to the radial stiffness and inversely proportional to the longitudinal flexibility. Compared to the classical crossing pattern, we have also proposed two patterns. These patterns have a minimal impact on the crimping and radial stiffness of stents, but the stent made from them are more flexible. Among three crossing patterns, it is interesting to see that the classical pattern is the most stable crossing pattern for stand numbers larger than 36, but it became the most unstable pattern at the strand number of 24. This work has shed light on the optimum design of braided stents.


2012 ◽  
Vol 6 (1) ◽  
Author(s):  
Shijia Zhao ◽  
Xiangyi (Cheryl) Liu ◽  
Linxia Gu

Braided wire stents demonstrate distinct characteristics compared to welded ones. In this study, both braided and welded wire stents with the same nominal dimensions were crimped inside a sheath and then deployed into a stenosed artery using finite element analysis. The braided wire stent was generated by overlapping wires to form crisscross shape. A welded wire stent was created by welding the intersection points of wires to avoid sliding between wires. The effect of fabrication technique on mechanical behavior of Nitinol wire stents was evaluated. The results showed that relative sliding between wires reduced the deformation of the braided stent, which led to less radial strength than the welded one; therefore, the deployed braided stent was more conformed to the anatomic shape of the lesion and much less efficient for restoring the patency of the stenotic artery. Post balloon-dilation was commonly used to improve its performance in terms of lumen gain and deployed shape of the stent. On the contrary, the welded wire stent exhibited a high capacity for pushing the occlusion outward. It reached an approximately uniform shape after deployment. The welded joints caused larger deformation and high strain on the stent struts, which indicate a potential earlier failure for the welded stent. In addition, higher contact pressure at the stent-lesion interface and higher arterial stresses were observed in the artery supported by the welded stent. The peak stress concentration may increase the occurrence of neointimal hyperplasia.


Author(s):  
C. Bojanowski ◽  
G. L. Solbrekken ◽  
G. H. Schnieders ◽  
J. D. Rivers ◽  
E. H. Wilson ◽  
...  

Abstract Low-enriched uranium (LEU) fuel element designs for the U.S. high performance research reactors LEU conversion cores have been optimized by each reactor facility to allow the reactors to meet mission, operational, and safety basis requirements using monolithic uranium-molybdenum fuel. As a part of work supporting the Preliminary Safety Analysis Report (PSAR) submitted to the NRC by the University of Missouri Research Reactor (MURR), the impact of thinner 1.12 mm LEU curved fuel plates, compared to the currently used highly-enriched uranium (HEU) curved plate thickness of 1.27 mm, has been assessed for hydro-mechanical performance. Plate deflection can be induced by the hydrodynamic pressure differential caused by differences in the thicknesses of surrounding coolant flow channels. An experimental study was conducted on relevant Materials Test Reactor-type (MTR-type) reactor plate geometries in a water flow test loop to validate computational models simulating flow-induced plate deflection. Three-dimensional fluid-structure interaction (FSI) simulations of the experiments were performed using several commercially available multi-physics simulation codes. Inclusion of as-built geometry of the plates and channels in the simulations was key to achieving good agreement with measured deflections. The validated computational methodology was applied to a model of the prototypic MURR LEU plate. For the nominal flow conditions, a small deflection of the plate on the order of 5 micrometers was predicted. That deflection is significantly less than the allowances in the PSAR for change in coolant channel thickness. The experimental model validation of plate deflection is important since conventional figures of merit for the robustness of MTR-type fuel plates under flow, such as the Miller critical velocity, often show a weak correlation with the prediction of stability. Subsequent to this work, irradiation qualification of the MURR LEU fuel element design has begun and will conclude with a full-size demonstration element test.


2019 ◽  
Vol 8 (1) ◽  
pp. 168-174 ◽  
Author(s):  
Qingli Zheng ◽  
Pengfei Dong ◽  
Zhiqiang Li ◽  
Xinwei Han ◽  
Changchun Zhou ◽  
...  

Abstract The novel braided composite stent (BCS), woven with both nitinol wires and polyethylene terephthalate (PET) strips, were characterized and compared with the braided nitinol stent in the same weaving pattern. Finite element models simulating the stent compression and bending were developed to quantify its radial strength and longitudinal flexibility. The interaction between the nitinol wires and the PET strips were also delineated. Results showed that the PET strips enforced more constrains on the BCS and thus enhance its radial strength especially at a larger compression load. The longitudinal flexibility of the BCS was less sensitive to the presence of the PET strips. This work suggested that the novel design of the BCS could acquire the advantage of a covered stent without compromising its mechanical performance. The fundamental understanding of the braided composite stent will facilitate a better device design.


2019 ◽  
Vol 29 (4) ◽  
pp. 667-686 ◽  
Author(s):  
Yeli Jin ◽  
Zhenyu Wu ◽  
Zhongxiang Pan ◽  
Laihu Peng ◽  
Xudong Hu

In this study, the performance of braided composite tubes under low-velocity transverse impact loading at mid-span was investigated using both numerical and experimental methods. Three types of braided composite tubes with different braiding angles (30°, 45°, and 60°) were manufactured. The transverse punch behavior of the tubes was examined on a low-velocity imspact test bench. A meso-level finite element model of the composite tube was also established for identifying the damage initiation and development. The numerical results showed a good correlation with the experimental data. The mechanical response including force–time histories, force–displacement histories, and fracture morphologies was compared between three types of composite tubes for analyzing the influence of braiding angle on the impact response and failure mode. Although suffering from the low bending stiffness depends on fiber volume fraction at initial impact stage, the braided tube with 30° angle engaged more portion to resist impact loading in subsequent process and thus presented higher peak loading than the one with large angle. In addition, there are distinct different failure modes between composite tubes with various braiding angles. Shear yarn breakage underneath the punch was prone to occur in 30° sample because the braiding yarn was closer to the axial direction of tube. In contrast, the resin was deboned severely from the braiding yarn and then the braiding yarn exhibits plastic deformation in 60° sample due to the stress concentration caused by the large braiding angle.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


2019 ◽  
Vol 97 ◽  
pp. 04022
Author(s):  
Nikolay Trekin ◽  
Emil Kodysh ◽  
Alexander Bybka ◽  
Alexander Yamalov ◽  
Nikita Konkov

The article provides an analysis and justification of the need to take into account the compliance of discs of overlapping and coatings when calculating frames from precast concrete structures. Previously conducted full-scale experiments showed that the rigidity of the precast overlapping with full filling of the seams, in comparison with the monolithic overlapping, decreases by 3-15 times due to the ductility of the joints. The use of refined computational models of structural solutions for frames, which take into account the compliance of the conjugations of elements, makes it possible to trace possible redistribution of efforts. Such an approach when reconstructing, it is possible to optimally select and calculate the enforcement of structure, and on new designing, to increase reliability and / or improve the economic performance of frame buildings. According to the results of analytical studies, formulas were adopted for the parameters that allow one to take into account the overall compliance of overlapping disks and coatings in computational models of building frames. Numerical studies on the computational model of a frame building made it possible to evaluate the effect of accounting for compliance on the stress-strain state of a multi-storey frame.


2021 ◽  
pp. 109963622110338
Author(s):  
Yury Solyaev ◽  
Arseniy Babaytsev ◽  
Anastasia Ustenko ◽  
Andrey Ripetskiy ◽  
Alexander Volkov

Mechanical performance of 3d-printed polyamide sandwich beams with different type of the lattice cores is investigated. Four variants of the beams are considered, which differ in the type of connections between the elements in the lattice structure of the core. We consider the pantographic-type lattices formed by the two families of inclined beams placed with small offset and connected by stiff joints (variant 1), by hinges (variant 2) and made without joints (variant 3). The fourth type of the core has the standard plane geometry formed by the intersected beams lying in the same plane (variant 4). Experimental tests were performed for the localized indentation loading according to the three-point bending scheme with small span-to-thickness ratio. From the experiments we found that the plane geometry of variant 4 has the highest rigidity and the highest load bearing capacity in the static tests. However, other three variants of the pantographic-type cores (1–3) demonstrate the better performance under the impact loading. The impact strength of such structures are in 3.5–5 times higher than those one of variant 4 with almost the same mass per unit length. This result is validated by using numerical simulations and explained by the decrease of the stress concentration and the stress state triaxiality and also by the delocalization effects that arise in the pantographic-type cores.


Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


2021 ◽  
Vol 80 (3) ◽  
pp. 1963-1980
Author(s):  
Solomon Adomako ◽  
Christian John Engelsen ◽  
Rein Terje Thorstensen ◽  
Diego Maria Barbieri

AbstractRock aggregates constitute the enormous volume of inert construction material used around the globe. The petrologic description as igneous, sedimentary, and metamorphic types establishes the intrinsic formation pattern of the parent rock. The engineering properties of these rocks vary due to the differences in the transformation process (e.g. hydrothermal deposits) and weathering effect. The two most common mechanical tests used to investigate the performance of aggregates are the Los Angeles (LA) and micro-Deval (MD) tests. This study reviewed the geological parameters (including mineralogy, grain and crystal size, grain shape, and porosity) and the relationship to Los Angeles and micro-Deval tests. It was found that high content of primary minerals in rocks (e.g. quartz and feldspar) is a significant parameter for performance evaluation. Traces of secondary and accessory minerals also affect the performance of rocks, although in many cases it is based on the percentage. Furthermore, some studies showed that the effect of mineralogic composition on mechanical strength is not sufficient to draw final conclusions of mechanical performance; therefore, the impact of other textural characteristics should be considered. The disposition of grain size and crystal size (e.g. as result of lithification) showed that rocks composed of fine-grain textural composition of ≤ 1 mm enhanced fragmentation and wear resistance than medium and coarse grained (≥ 1 mm). The effect of grain shape was based on convex and concave shapes and flat and elongated apexes of tested samples. The equidimensional form descriptor of rocks somehow improved resistance to impact from LA than highly flat and elongated particles. Lastly, the distribution of pore space investigated by means of the saturation method mostly showed moderate (R = 0.50) to strong (R = 0.90) and positive correlations to LA and MD tests.


Sign in / Sign up

Export Citation Format

Share Document