Aerosol density distribution in the boundary layer measured by a scanning LIDAR system

1993 ◽  
Author(s):  
Shlomo Fastig ◽  
Y. Benayahu ◽  
Abraham Englander ◽  
E. Glaser
Author(s):  
Rebecca Howe ◽  
Ioannis Binnietoglou ◽  
Jamie O.D. Williams ◽  
Alexandras Fragkos ◽  
George Tsaknakis ◽  
...  

2017 ◽  
Vol 37 (2) ◽  
pp. 0201003
Author(s):  
洪光烈 Hong Guanglie ◽  
李嘉唐 Li Jiatang ◽  
孔 伟 Kong Wei ◽  
葛 烨 Ge Ye ◽  
舒 嵘 Shu Rong

1980 ◽  
Vol 61 (9) ◽  
pp. 1035-1043 ◽  
Author(s):  
Edward E. Uthe ◽  
Norman B. Nielsen ◽  
Walter L. Jimison

A new two-wavelength airborne lidar system has been constructed and field-tested. The system was designed to observe the distribution of particle concentrations over large regional areas. During a one-week field-test program, the system was used to observe boundary layer structure over the Los Angeles area and the downwind structure of particulate plumes from the Navajo (Page, Ariz.) and Four Corners (Farmington, N.Mex.) power plants. Data examples presented show the importance of terrain features in influencing particle concentration distributions over regional areas.


2011 ◽  
Vol 4 (1) ◽  
pp. 73-99 ◽  
Author(s):  
G. Tsaknakis ◽  
A. Papayannis ◽  
P. Kokkalis ◽  
V. Amiridis ◽  
H. D. Kambezidis ◽  
...  

Abstract. This study presents an inter-comparison of two active remote sensors (lidar and ceilometer) in determining the structure of the Planetary Boundary Layer (PBL) and in retrieving tropospheric aerosol vertical profiles over Athens, Greece. This inter-comparison was performed under various strongly different aerosol concentrations (urban air pollution, biomass burning and Saharan dust event), implementing two different lidar systems (one portable Raymetrics S.A. lidar system running at 355 nm and one multi-wavelength Raman lidar system running at 355 nm, 532 nm and 1064 nm) and one CL31 Vaisala S.A. ceilometer (running at 910 nm). To convert the ceilometer data to data having the same wavelengths as those from the lidar, the backscatter-related Ångström exponent was estimated using ultraviolet multi-filter radiometer (UV-MFR) data. The inter-comparison was based on two parameters: the mixing layer structure and height determined by the presence of the suspended aerosols and the aerosol backscatter coefficient. Additionally, radiosonde data were used to derive the PBL height. In general a good agreement is found between the ceilometer and the lidar techniques in both inter-compared parameters in the height range from 500 m to 5000 m, while the limitations of each instrument are also examined.


2015 ◽  
Vol 4 (1) ◽  
pp. 35-44 ◽  
Author(s):  
C.-W. Chiang ◽  
S. K. Das ◽  
H.-W. Chiang ◽  
J.-B. Nee ◽  
S.-H. Sun ◽  
...  

Abstract. An in-house developed mobile and portable three-dimensional scanning lidar system is discussed in this work. The system uses a stimulated Raman-scattering technique for the continuous observation of atmospheric aerosols, clouds and trace gases. This system has a fast scanning technique with a high-speed data acquisition, and permits the real-time measurement of atmospheric pollutants with the temporal resolution of 1 min. This scanning lidar system provides typical horizontal coverage of about 8–10 km while scanning; however, in zenith mode, good quality backscattered signals can be from 20 km, depending upon the laser power and sky conditions. This versatile lidar system has also overcome the drawbacks which are popular in the traditional scanning lidar systems such as complicated operation, overlap height between laser beam and telescope field of view In this system, the optical damage is reduced by using an integral coaxial transmitter and receiver. Some of the initial results obtained from the scanning lidar system are also presented. This study shows that boundary-layer structure and land–sea breeze circulation can be resolved from the developed scanning lidar system. The application of this lidar system to measure the pollutants over an industrial area is also discussed.


2013 ◽  
Vol 639-640 ◽  
pp. 1259-1264
Author(s):  
Ji Xiang Zhong

At present, the degree of compaction is the main criterion for subgrade compaction quality.It is the relative expression of the compacted density,Just average.It does not adequately reflect the subgrade compaction layer vertical compaction density distribution law. Compaction boundary layer micro-unit compression pressure on in the process of pressure transmission decreases gradually until they reach the critical formation pressure dense layer. Compaction by detecting the boundary layer vertical zone layer densification, to calculate the boundary thickness, to draw isodense of densification. a clear reproduction of the compacted layer vertical compaction density distribution law. This paper describes the detection principles and detection methods of the compaction boundary layer. describes in detail functional structure and system design of the vehicle automatic detection system used to detect compaction boundary layer of each vertical zone.


1998 ◽  
Author(s):  
Liquan Yang ◽  
Jinhuan Qiu ◽  
Siping Zheng ◽  
Qirong Huang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document