scholarly journals Gold nanorods as photothermal agents and autofluorescence enhancer to track cell death during plasmonic photothermal therapy

2015 ◽  
Author(s):  
Ravi Kumar Kannadorai ◽  
Geraldine Giap Ying Chiew ◽  
Kathy Qian Luo ◽  
Quan Liu
Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 880 ◽  
Author(s):  
Yanhua Yao ◽  
Nannan Zhang ◽  
Xiao Liu ◽  
Qiaofeng Dai ◽  
Haiying Liu ◽  
...  

In this paper, the plasmon resonance effects of gold nanorods was used to achieve rapid photothermal therapy for malignant melanoma cells (A375 cells). After incubation with A375 cells for 24 h, gold nanorods were taken up by the cells and gold nanorod clusters were formed naturally in the organelles of A375 cells. After analyzing the angle and space between the nanorods in clusters, a series of numerical simulations were performed and the results show that the plasmon resonance coupling between the gold nanorods can lead to a field enhancement of up to 60 times. Such high energy localization causes the temperature around the nanorods to rise rapidly and induce cell death. In this treatment, a laser as low as 9.3 mW was used to irradiate a single cell for 20 s and the cell died two h later. The cell death time can also be controlled by changing the power of laser which is focused on the cells. The advantage of this therapy is low laser treatment power, short treatment time, and small treatment range. As a result, the damage of the normal tissue by the photothermal effect can be greatly avoided.


2016 ◽  
pp. 3287-3294
Author(s):  
Kostiantyn Turcheniuk ◽  
Charles-Henri Hage ◽  
Jolanda Spadavecchia ◽  
Laurent Heliot ◽  
Rabah Boukherroub ◽  
...  

2017 ◽  
Vol 114 (15) ◽  
pp. E3110-E3118 ◽  
Author(s):  
Moustafa R. K. Ali ◽  
Mohammad Aminur Rahman ◽  
Yue Wu ◽  
Tiegang Han ◽  
Xianghong Peng ◽  
...  

Gold nanorods (AuNRs)-assisted plasmonic photothermal therapy (AuNRs-PPTT) is a promising strategy for combating cancer in which AuNRs absorb near-infrared light and convert it into heat, causing cell death mainly by apoptosis and/or necrosis. Developing a valid PPTT that induces cancer cell apoptosis and avoids necrosis in vivo and exploring its molecular mechanism of action is of great importance. Furthermore, assessment of the long-term fate of the AuNRs after treatment is critical for clinical use. We first optimized the size, surface modification [rifampicin (RF) conjugation], and concentration (2.5 nM) of AuNRs and the PPTT laser power (2 W/cm2) to achieve maximal induction of apoptosis. Second, we studied the potential mechanism of action of AuNRs-PPTT using quantitative proteomic analysis in mouse tumor tissues. Several death pathways were identified, mainly involving apoptosis and cell death by releasing neutrophil extracellular traps (NETs) (NETosis), which were more obvious upon PPTT using RF-conjugated AuNRs (AuNRs@RF) than with polyethylene glycol thiol-conjugated AuNRs. Cytochrome c and p53-related apoptosis mechanisms were identified as contributing to the enhanced effect of PPTT with AuNRs@RF. Furthermore, Pin1 and IL18-related signaling contributed to the observed perturbation of the NETosis pathway by PPTT with AuNRs@RF. Third, we report a 15-month toxicity study that showed no long-term toxicity of AuNRs in vivo. Together, these data demonstrate that our AuNRs-PPTT platform is effective and safe for cancer therapy in mouse models. These findings provide a strong framework for the translation of PPTT to the clinic.


2013 ◽  
Vol 29 (3) ◽  
pp. 939-948 ◽  
Author(s):  
Alireza Mehdizadeh ◽  
Sajjad Pandesh ◽  
Ali Shakeri-Zadeh ◽  
Seyed Kamran Kamrava ◽  
Mojtaba Habib-Agahi ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
pp. 216-221 ◽  
Author(s):  
A. B. Bucharskaya ◽  
G. N. Maslyakova ◽  
N. I. Dikht ◽  
N. A. Navolokin ◽  
G. S. Terentyuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document