Spatial distribution of total column ozone and total column water vapor over European Russia during the spring and summer atmospheric blocks in 2010

Author(s):  
S. A. Sitnov ◽  
I. I. Mokhov
2008 ◽  
Vol 8 (1) ◽  
pp. 3143-3162 ◽  
Author(s):  
M. C. R. Kalapureddy ◽  
P. Ernest Raj ◽  
P. C. S. Devara

Abstract. Special campaign mode ship-based sun photometric observations of total column ozone over the oceanic regions around the Indian sub-continent (56° E–6° E, 4° N–° N) during the pre-monsoon period (18 March–11 May) of 2006 have been used to investigate the spatial and temporal distributions. The overall mean ozone content over the sea region during this period is 298 DU with a variability of ±10 DU. There is a well defined diurnal (daytime) variation in total column ozone with maximum content around the noon-time hours. The amplitude of diurnal variation is higher over the Arabian Sea compared to that over Bay of Bengal. Spatial distribution of total ozone shows higher values over the Head Bay (North Bay of Bengal) and all along the west coast of India strongly pointing to continental origin of possible anthropogenic source. This is further corroborated from the spatial distribution of simultaneously measured aerosol optical thickness (AOT, at 1020 nm) and precipitable water. The overall mean AOT over the oceanic region is 0.09 and mean precipitable water (water vapor) over Indian Ocean region was 3.25 cm which is almost 1 cm higher than that observed over Bay of Bengal and Arabian Sea during the above pre-monsoon period.


2018 ◽  
Author(s):  
Marianna Linz ◽  
Marta Abalos ◽  
Anne Sasha Glanville ◽  
Douglas E. Kinnison ◽  
Alison Ming ◽  
...  

Abstract. The circulation of the stratosphere, also known as the Brewer-Dobson circulation, transports water vapor and ozone, with implications for radiative forcing and climate. This circulation is typically quantified from model output by calculating the tropical upwelling vertical velocity in the residual circulation framework, and it is estimated from observations by using time series of tropical water vapor to infer a vertical velocity. Recent theory has introduced a method to calculate the global mean diabatic circulation strength through isentropes from satellite measurements of long-lived tracers. In this paper, we explore this global diabatic circulation as it relates to the residual circulation vertical velocity, stratospheric water vapor, and ozone at interannual timescales. We use a comprehensive climate model, three reanalysis data products, and satellite ozone data. The different metrics for the circulation have different properties, especially with regards to the vertical autocorrelation. In the model, the different residual circulation metrics agree closely and are well correlated with the global diabatic circulation, except in the lowermost stratosphere. In the reanalysis products however, there are more differences throughout, indicating the dynamical inconsistencies of these products. The vertical velocity derived from the time series of water vapor in the tropics is significantly correlated with the diabatic circulation, but this relationship is not as strong as that between the diabatic circulation and the residual circulation vertical velocity. We find that the diabatic circulation in the lower to middle stratosphere (up to 500 K) is correlated with the total column ozone in the high latitudes and in the tropics. The upper level circulation is also correlated with the total column ozone, primarily in the subtropics, and we show that this is due to the correlation of both the circulation and the ozone with upper level temperatures.


2019 ◽  
Vol 19 (7) ◽  
pp. 5069-5090 ◽  
Author(s):  
Marianna Linz ◽  
Marta Abalos ◽  
Anne Sasha Glanville ◽  
Douglas E. Kinnison ◽  
Alison Ming ◽  
...  

Abstract. The circulation of the stratosphere, also known as the Brewer–Dobson circulation, transports water vapor and ozone, with implications for radiative forcing and climate. This circulation is typically quantified from model output by calculating the tropical upwelling vertical velocity in the residual circulation framework, and it is estimated from observations by using time series of tropical water vapor to infer a vertical velocity. Recent theory has introduced a method to calculate the strength of the global mean diabatic circulation through isentropes from satellite measurements of long-lived tracers. In this paper, we explore this global diabatic circulation as it relates to the residual circulation vertical velocity, stratospheric water vapor, and ozone at interannual timescales. We use a comprehensive climate model, three reanalysis data products, and satellite ozone data. The different metrics for the circulation have different properties, especially with regards to the vertical autocorrelation. In the model, the different residual circulation metrics agree closely and are well correlated with the global diabatic circulation, except in the lowermost stratosphere. In the reanalysis products, however, there are more differences throughout, indicating the dynamical inconsistencies of these products. The vertical velocity derived from the time series of water vapor in the tropics is significantly correlated with the global diabatic circulation, but this relationship is not as strong as that between the global diabatic circulation and the residual circulation vertical velocity. We find that the global diabatic circulation in the lower to middle stratosphere (up to 500 K) is correlated with the total column ozone in the high latitudes and in the tropics. The upper-level circulation is also correlated with the total column ozone, primarily in the subtropics, and we show that this is due to the correlation of both the circulation and the ozone with upper-level temperatures.


2015 ◽  
Vol 8 (10) ◽  
pp. 4487-4505 ◽  
Author(s):  
K.-L. Chang ◽  
S. Guillas ◽  
V. E. Fioletov

Abstract. Total column ozone variations estimated using ground-based stations provide important independent source of information in addition to satellite-based estimates. This estimation has been vigorously challenged by data inhomogeneity in time and by the irregularity of the spatial distribution of stations, as well as by interruptions in observation records. Furthermore, some stations have calibration issues and thus observations may drift. In this paper we compare the spatial interpolation of ozone levels using the novel stochastic partial differential equation (SPDE) approach with the covariance-based kriging. We show how these new spatial predictions are more accurate, less uncertain and more robust. We construct long-term zonal means to investigate the robustness against the absence of measurements at some stations as well as instruments drifts. We conclude that time series analyzes can benefit from the SPDE approach compared to the covariance-based kriging when stations are missing, but the positive impact of the technique is less pronounced in the case of drifts.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
María Cazorla ◽  
René Parra ◽  
Edgar Herrera ◽  
Francisco Raimundo da Silva

In this study, we characterize atmospheric ozone over the tropical Andes in the boundary layer, the free troposphere, and the stratosphere; we quantify each contribution to total column ozone, and we evaluate the performance of the multi-sensor reanalysis (MSR2) in the region. Thus, we present data taken in Ecuador and Peru (2014–2019). The contribution from the surface was determined by integrating ozone concentrations measured in Quito and Cuenca (Ecuador) up to boundary layer height. In addition, tropospheric and stratospheric column ozone were quantified from ozone soundings (38) launched from Quito during the study time period. Profiles were compared against soundings at Natal (SHADOZ network) for being the closest observational reference with sufficient data in 2014–2019. Data were also compared against stratospheric mixing ratios from the Aura Microwave Limb Sounder (Aura MLS). Findings demonstrate that the stratospheric component of total column ozone over the Andes (225.2 ± 8.9 Dobson Units [DU]) is at similar levels as those observed at Natal (223.3 ± 8.6 DU), and observations are comparable to Aura MLS data. In contrast, the tropospheric contribution is lower over the Andes (20.2 ± 4.3 DU) when compared to Natal (35.4 ± 6.4 DU) due to a less deep and cleaner troposphere. From sounding extrapolation of Quito profiles down to sea level, we determined that altitude deducts about 5–7 DU from the total column, which coincides with a 3%–4% overestimation of the MSR2 over Quito and Marcapomacocha (Peru). In addition, when MSR2 data are compared along a transect that crosses from the Amazon over Quito, the Ecuadorian coast side, and into the Pacific, observations are not significantly different among the three first locations. Results point to coarse reanalysis resolution not being suitable to resolve the formidable altitude transition imposed by the Andes mountain chain. This work advances our knowledge of atmospheric ozone over the study region and provides a robust time series of upper air measurements for future evaluations of satellite and reanalysis products.


Sign in / Sign up

Export Citation Format

Share Document