Laser remote maneuver of space debris at the Space Environment Research Centre

2016 ◽  
Author(s):  
Matthew M. Bold
MRS Bulletin ◽  
2010 ◽  
Vol 35 (1) ◽  
pp. 41-47 ◽  
Author(s):  
E. Grossman ◽  
I. Gouzman ◽  
R. Verker

AbstractIn the last 40 years, the increased space activity created a new form of space environment of hypervelocity objects—space debris—that have no functional use. The space debris, together with naturally occurring ultrahigh velocity meteoroids, presents a significant hazard to spacecraft. Collision with space debris or meteoroids might result in disfunction of external units such as solar cells, affecting materials properties, contaminating optical devices, or destroying satellites. The collision normally results in the formation of additional debris, increasing the hazard for future missions. The hypervelocity debris effect is studied by retrieving materials from space or by using ground simulation facilities. Simulation facilities, which include the light gas gun and Laser Driven Flyer methods, are used for studying the materials degradation due to debris impact. The impact effect could be accelerated when occurring simultaneously with other space environment components, such as atomic oxygen, ultraviolet, or x-ray radiation. Understanding the degradation mechanism might help in developing materials that will withstand the increasing hazard from the space debris, allowing for longer space missions. The large increase in space debris population and the associated risk to space activity requires significant measures to mitigate this hazard. Most current efforts are being devoted to prevention of collisions by keeping track of the larger debris and avoiding formation of new debris.


2001 ◽  
Vol 196 ◽  
pp. 181-184
Author(s):  
W. Flury

The mass and number of Earth-orbiting human-generated space debris have increased steadily since the beginning of space flight. Recent voluntary measures for debris mitigation applied by space operators have not stemmed the increase. The debris hazard for manned and unmanned missions is still low, but rising. More effective but also more costly measures, such as selective deorbiting of used stages, will be necessary to avoid a run-away situation. Internationally agreed codes for debris management and control are needed to solve this global space environment problem.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Thierry Woignier ◽  
Laurent Duffours ◽  
Pascale Colombel ◽  
Christian Durin

Material degradation due to the specific space environment becomes a key parameter for space missions. The use of large surface of brittle materials on satellites can produce, if impacted by hypervelocity particles, ejected volumes of mater 100 times higher than the impacting one. The presented work is devoted to the use of silica aerogels as passive detectors. Aerogels have been exposed to the low earth orbit of the ISS for 18 months. The study describes the aerogels process and the choice of synthesis parameters in such a way to get expected features in terms of porosity, mechanical properties, internal stresses, and transparency. Low-density aerogels (0.09 g·cm−3) have been prepared. The control of transparency necessary to see and identify particles and fragments collected is obtained using a base catalysis during gel synthesis. After return to earth, the aerogels samples have been observed using optical microscopy to detect and quantify craters on the exposed surface. First results obtained on a small part of the aerogels indicate a large number of debris collected in the materials.


2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Peter Simon Sapaty

The threats of space debris are enormously high, which are increasing due to launch of multi-satellite constellations, especially in low-Earth orbit, with millions of pieces of junk there. Different passive and active debris removal methods are being developed like self-deorbiting of used satellites, drag sails, mechanical grasps, tethers and nets, also directed energy, lasers including. Space junk is the responsibility of the whole mankind, and the problem of managing space debris is both the international challenge and the opportunity to preserve the space environment for future space exploration missions. The paper shows how self-organized constellation networks of deorbiting satellites can organize multiple cleaning operations autonomously under the developed Spatial Grasp Technology (SGT), with cooperative involvement of the whole network and minimum interaction with costly ground antennas and stations. It also offers a unique solution where most dangerous junk items can themselves be treated as active virtual-physical items freely moving through terrestrial and celestial environments and ultimately finding, by their own initiative, the proper cleaning satellites. This can effectively organize the global junk management and removal problem, where the active junk items can keep initiative of self-removal for any time needed and using any distributed resources. A combined solution is also offered with initial global search for approximate satellite-debris matching, after which the junk is delegated its own initiative to find the absolute match by traveling around the globe as far and as long as required. The paper shows and explains different practical cleaning scenarios in the high-level Spatial Grasp Language (as key element of SGT) and possibilities of quick implementation of the approach.


Author(s):  
Yuki Mando ◽  
Koji Tanaka ◽  
Takayuki Hirai ◽  
Shirou Kawakita ◽  
Masumi Higashide ◽  
...  

Abstract Space debris travels at a velocity of 7-8 km/s in low Earth orbit (LEO) and at 3 km/s in geostationary Earth orbit (GEO). An impact between space debris and spacecraft will result in tremendous damage. In particular, particles less than 1mm in diameter pose a risk of causing permanent sustained discharge (PSD). PSD may affect a satellite’s power system. The effect on solar arrays has been well-studied given their large area, but the effect on the bundle of a satellite’s wire harness (called the power harness) has yet to be clarified, even though the power harness is usually exposed to the space environment without protection. We conducted hypervelocity impact experiments using a two-stage light gas gun, and investigated the risk resulting in PSD from hypervelocity impacts of particles less than 1mm in size. In addition, we compared two kinds of circuit configurations: a more realistic circuit configuration with internal resistance and a circuit configuration without it, so as to investigate whether internal resistance affects the occurrence of PSD. Stainless steel and aluminum oxide projectiles measuring from 0.3 to 1 mm in diameter were gun-accelerated up to 7.16 km/s. Targets entailed a three-layered power harness under a simulated power condition of typical satellites operating in LEO or GEO. As a result, 11 of 28 shots resulted in PSD. With the more realistic circuit configuration we could not confirm any results regarding PSD. We thus found that PSD is less likely to occur in a more realistic circuit configuration.


Sign in / Sign up

Export Citation Format

Share Document