scholarly journals Space Debris Removal under Spatial Grasp Technology

2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Peter Simon Sapaty

The threats of space debris are enormously high, which are increasing due to launch of multi-satellite constellations, especially in low-Earth orbit, with millions of pieces of junk there. Different passive and active debris removal methods are being developed like self-deorbiting of used satellites, drag sails, mechanical grasps, tethers and nets, also directed energy, lasers including. Space junk is the responsibility of the whole mankind, and the problem of managing space debris is both the international challenge and the opportunity to preserve the space environment for future space exploration missions. The paper shows how self-organized constellation networks of deorbiting satellites can organize multiple cleaning operations autonomously under the developed Spatial Grasp Technology (SGT), with cooperative involvement of the whole network and minimum interaction with costly ground antennas and stations. It also offers a unique solution where most dangerous junk items can themselves be treated as active virtual-physical items freely moving through terrestrial and celestial environments and ultimately finding, by their own initiative, the proper cleaning satellites. This can effectively organize the global junk management and removal problem, where the active junk items can keep initiative of self-removal for any time needed and using any distributed resources. A combined solution is also offered with initial global search for approximate satellite-debris matching, after which the junk is delegated its own initiative to find the absolute match by traveling around the globe as far and as long as required. The paper shows and explains different practical cleaning scenarios in the high-level Spatial Grasp Language (as key element of SGT) and possibilities of quick implementation of the approach.

2020 ◽  
Vol 29 (1) ◽  
pp. 94-106
Author(s):  
Chongyuan Hou ◽  
Yuan Yang ◽  
Yikang Yang ◽  
Kaizhong Yang ◽  
Xiao Zhang ◽  
...  

AbstractThe increase in space debris orbiting Earth is a critical problem for future space missions. Space debris removal has thus become an area of interest, and significant research progress is being made in this field. However, the exorbitant cost of space debris removal missions is a major concern for commercial space companies. We therefore propose the debris removal using electromagnetic launcher (DREL) system, a ground-based electromagnetic launch system (railgun), for space debris removal missions. The DREL system has three components: a ground-based electromagnetic launcher (GEML), suborbital vehicle (SOV), and mass of micrometer-scale dust (MSD) particles. The average cost of removing a piece of low-earth orbit space debris using DREL was found to be approximately USD 160,000. The DREL method is thus shown to be economical; the total cost to remove more than 2,000 pieces of debris in a cluster was only approximately USD 400 million, compared to the millions of dollars required to remove just one or two pieces of debris using a conventional space debris removal mission. By using DREL, the cost of entering space is negligible, thereby enabling countries to remove their space debris in an affordable manner.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Thierry Woignier ◽  
Laurent Duffours ◽  
Pascale Colombel ◽  
Christian Durin

Material degradation due to the specific space environment becomes a key parameter for space missions. The use of large surface of brittle materials on satellites can produce, if impacted by hypervelocity particles, ejected volumes of mater 100 times higher than the impacting one. The presented work is devoted to the use of silica aerogels as passive detectors. Aerogels have been exposed to the low earth orbit of the ISS for 18 months. The study describes the aerogels process and the choice of synthesis parameters in such a way to get expected features in terms of porosity, mechanical properties, internal stresses, and transparency. Low-density aerogels (0.09 g·cm−3) have been prepared. The control of transparency necessary to see and identify particles and fragments collected is obtained using a base catalysis during gel synthesis. After return to earth, the aerogels samples have been observed using optical microscopy to detect and quantify craters on the exposed surface. First results obtained on a small part of the aerogels indicate a large number of debris collected in the materials.


Author(s):  
Yuki Mando ◽  
Koji Tanaka ◽  
Takayuki Hirai ◽  
Shirou Kawakita ◽  
Masumi Higashide ◽  
...  

Abstract Space debris travels at a velocity of 7-8 km/s in low Earth orbit (LEO) and at 3 km/s in geostationary Earth orbit (GEO). An impact between space debris and spacecraft will result in tremendous damage. In particular, particles less than 1mm in diameter pose a risk of causing permanent sustained discharge (PSD). PSD may affect a satellite’s power system. The effect on solar arrays has been well-studied given their large area, but the effect on the bundle of a satellite’s wire harness (called the power harness) has yet to be clarified, even though the power harness is usually exposed to the space environment without protection. We conducted hypervelocity impact experiments using a two-stage light gas gun, and investigated the risk resulting in PSD from hypervelocity impacts of particles less than 1mm in size. In addition, we compared two kinds of circuit configurations: a more realistic circuit configuration with internal resistance and a circuit configuration without it, so as to investigate whether internal resistance affects the occurrence of PSD. Stainless steel and aluminum oxide projectiles measuring from 0.3 to 1 mm in diameter were gun-accelerated up to 7.16 km/s. Targets entailed a three-layered power harness under a simulated power condition of typical satellites operating in LEO or GEO. As a result, 11 of 28 shots resulted in PSD. With the more realistic circuit configuration we could not confirm any results regarding PSD. We thus found that PSD is less likely to occur in a more realistic circuit configuration.


2020 ◽  
Vol 6 (3) ◽  
pp. 199
Author(s):  
Runggu Prilia Ardes ◽  
Ridha Aditya Nugraha

As the orbit in outer space becomes denser, the drive to actively preserve the outer space increases. Active debris removal is the answer to this issue. It serves solemn purposes to maintain the space environment and prevent collision between space objects. This action requires high-level technology and techniques which make it prone to accidents. This article examines the applicability of Liability Convention of 1972 and Indonesian Space Act of 2013 for active debris removal and whether its provisions are sufficient for any future legal issues on this matter. A normative juridical method is used for the analysis. The Space Act from other States like France and Austria will also be briefly mentioned and compared to. At the end, it is concluded that although both of the legal instruments are suitable and applicable for active debris removal, there are still some essential aspects that need to be defined namely property and proof of fault. The paper suggests that it should be emphasized that only catalogued debris can be regarded as property, and that the term “fault” at the minimum should have a modest definition that captures the “deviation from the normal operation”.


2020 ◽  
Author(s):  
Leonard Schulz ◽  
Karl-Heinz Glassmeier

<p>The increasing activities in space due to more and more countries with space programs, advancing commercialization, and large satellite constellation projects lead to a rising number of human-made objects in space. While many of those stay in orbit at high altitudes, objects in low Earth orbit reenter the atmosphere mostly disintegrating and injecting material into the atmosphere. The growing concern about space debris has led to policies encouraging deorbiting of satellites at the end of their lifetime. All that will increase the annual mass influx into the atmosphere by human-made (anthropogenic) objects in the future. We compare the influx of those objects to the natural mass influx of entering meteoroids of asteroidal, cometary, and planetary origin into Earth's atmosphere. We look at the mass and the elemental composition of the entering bodies also incorporating different ablation of those objects. This way, a quantitative assessment of the annual injection of aerosols and atomic remnants into the atmosphere is possible. Today, anthropogenic material makes up way less than 1 % of the overall injected mass. However, future large spacecraft constellations could increase the anthropogenic influx significantly, then contributing 4 % or more of the whole injection. As spacecraft have a high abundance of metal elements, the metal mass portion of the injection can reach up to 15 %. For some elements, the anthropogenic injection may even prevail the natural injection. This implies for future large satellite constellations that the anthropogenic injection can become significant with unknown effects on the upper atmosphere and the terrestrial habitat.</p>


Author(s):  
Denise Keil ◽  
Frederic Seiz ◽  
Nils Bartels ◽  
Wolfgang Riede ◽  
Maciej Sznajder ◽  
...  

AbstractThe aim of this paper is to verify if commonly occurring space debris materials change their reflectivity and morphology after being exposed to low energy protons. Therefore, a set of six different materials frequently used in spacecraft engineering was irradiated with low energy (100 keV) protons to simulate the aging of their surfaces due to space radiation in low Earth orbit (LEO). A microscopic and spectroscopic analysis of the irradiated samples reveals that the tested materials containing organic polymers (Polytetrafluoroethylene (PTFE) and carbon fiber reinforced plastic (CFRP)) show changes in surface morphology. Metallic surfaces did not show surface modifications but we found changes in the reflectivity of coated polyimide sheets, like used in Multi Layer Insulation blankets, during and after proton irradiation. Our results show that space materials exhibit significant changes after irradiation equivalent to the dose accumulated after 100 years in LEO. This knowledge is highly relevant for the interpretation of optical data related to the observation of space debris as well as to studies about laser-matter interaction for laser-based debris removal.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Guanhua Feng ◽  
Wenhao Li ◽  
Heng Zhang

The space debris removal problem needs to be solved urgently. Over 70% of debris is distributed between the 500 km and 1000 km low Earth orbits (LEO), and existing methods may be theoretically feasible but are not the high-efficiency and low-consumption methods for LEO debris removal. Based on the torque effect of a static magnet interacting with the geomagnetic field, a new spin angular momentum exchange (SAME) method by geomagnetic excitation (without working medium consumption) for LEO active debris deorbiting is proposed. The LEO delivery capability of this method is researched. Two kinds of spin angular momentum accumulation (SAMA) strategies are proposed. Then through numerical simulation under the dipole model and International Geomagnetic Reference Field (IGRF11) model, the results confirm the physical feasibility and basic performance of the proposed method. The method can be applied to the regions of the LEO below 1000 km with different altitudes/inclinations and eccentricities, and with existent magnetorquer technology, only several days of preparation is required for about 104 m·kg mechanism-scale-debris-mass deorbiting, which can be used for deorbiting missions in debris-intensive areas (altitude≤1000 km); without consideration of external effects on the geomagnetic field distribution, it has the same deorbiting capability with that of the LEO below 1000 km when the altitude is over 1000 km. Besides, the method is characterized by explicit mechanism, flexible control strategy and application, and low dependence on the scale. Finally, the key technology requirements and future application of LEO active debris removal and on-orbit delivery by using SAME are prospected.


2021 ◽  
Vol 11 (20) ◽  
pp. 9490
Author(s):  
Shuyi Ren ◽  
Xiaohua Yang ◽  
Ronglan Wang ◽  
Siqing Liu ◽  
Xiaojing Sun

The wide application of satellite constellations in the field of space-based global communications and remote sensing has led to a substantial increase in small-satellite launch plans, a sharp increase in the density of space objects in low-Earth orbit (LEO), and a reduction in available orbit and frequency resources. This will further aggravate the trend of deterioration of the space debris environment. Taking the Starlink constellation as an example, this paper describes the influence of the constellation from the environmental debris flux of the satellite, the evaluation of the number of evasion maneuvers, the change of risk level, the success rate of post mission disposal (PMD) and the growth rate of space objects. The simulation results show that the collision risk of the Starlink constellation is related to the orbital parameters, and the higher success rate of post-mission disposal (PMD) can reduce the collision risk of the constellation. The large constellations increases the growth rate of space objects, and even if all the satellites are disposed of after the mission, the impact of constellations on the space environment can not be offset.


Author(s):  
Özgün Yılmaz ◽  
Nabil Aouf ◽  
Elena Checa ◽  
Laurent Majewski ◽  
Manuel Sanchez-Gestido

In space, visual-based relative navigation systems suffer from dynamic illumination conditions of the target (eclipse conditions, solar glare, etc.) where most of these issues are addressed by advanced mission planning techniques. However, such planning would not be always feasible or even if it is, it would not be straightforward for active debris removal missions. On the other hand, using an infrared-based system would overcome this problem, if a guideline to predict infrared signature of space debris based on the target thermal profile could be provided for algorithm design and testing. Spacecraft thermal design is unique to every platform. This means every active debris removal target will have a different infrared signature, which changes over time not just only due to orbital dynamics but also due to its thermal surface coatings. In order to provide a space debris infrared signature guideline for most of the possible active debris removal targets, we introduce an innovative grouping system for thermal surface coatings based on their behaviour in space environment. Through the use of this grouping system, we propose a space debris infrared signature estimation method, which was extensively verified by our simulations and experiments. During our verifications, we have also discovered very important problem so-called ‘signature ambiguity’ that is unique to infrared-based active debris removal systems, which we have also discussed in our work.


Sign in / Sign up

Export Citation Format

Share Document