Wide-range displacement sensor based on a hollow coaxial cable Fabry-Perot resonator

Author(s):  
Chen Zhu ◽  
Jie Huang
2018 ◽  
Vol 18 (11) ◽  
pp. 4436-4442 ◽  
Author(s):  
Chen Zhu ◽  
Yizheng Chen ◽  
Yiyang Zhuang ◽  
Jie Huang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michał Dudek ◽  
Rafał Kowerdziej ◽  
Alessandro Pianelli ◽  
Janusz Parka

AbstractGraphene-based hyperbolic metamaterials provide a unique scaffold for designing nanophotonic devices with active functionalities. In this work, we have theoretically demonstrated that the characteristics of a polarization-dependent tunable hyperbolic microcavity in the mid-infrared frequencies could be realized by modulating the thickness of the dielectric layers, and thus breaking periodicity in a graphene-based hyperbolic metamaterial stack. Transmission of the tunable microcavity shows a Fabry–Perot resonant mode with a Q-factor > 20, and a sixfold local enhancement of electric field intensity. It was found that by varying the gating voltage of graphene from 2 to 8 V, the device could be self-regulated with respect to both the intensity (up to 30%) and spectrum (up to 2.1 µm). In addition, the switching of the device was considered over a wide range of incident angles for both the transverse electric and transverse magnetic modes. Finally, numerical analysis indicated that a topological transition between elliptic and type II hyperbolic dispersion could be actively switched. The proposed scheme represents a remarkably versatile platform for the mid-infrared wave manipulation and may find applications in many multi-functional architectures, including ultra-sensitive filters, low-threshold lasers, and photonic chips.


Measurement ◽  
2020 ◽  
Vol 151 ◽  
pp. 107019
Author(s):  
Tong Jiao ◽  
Zhi Zhou ◽  
Jia Liu ◽  
Hai Xiao ◽  
Jinping Ou

1995 ◽  
Vol 149 ◽  
pp. 369-381 ◽  
Author(s):  
J. Bland-Hawthorn

Over the last four days, we have enjoyed a wide range of talks on developments in three dimensional spectroscopic techniques. The conference organizing committee are to be congratulated for the artful manner in which instrumental presentations were interleaved with talks on the scientific results from these instruments. The general thrust of most talks was to advance the versatility of traditional instruments either through the Jacquinot (throughput) advantage or through the multiplex advantage, or both. A number of groups have attempted to utilize the full aperture of scanning Fabry-Perot and Fourier Transform interferometers. Arguably, Fabry-Perot interferometers have a wider application at present, although imaging Fourier Transform devices appear to have finally arrived, at least in the near infrared.


2013 ◽  
Vol 677 ◽  
pp. 363-367
Author(s):  
Yuri N. Kulchin ◽  
Oleg B. Vitrik ◽  
Stanislav O. Gurbatov

The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry–Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0,71 and 0,077, respectively, and enable changes in the refractive index of the ambient medium down to 5∙10–6 to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractive index sensors capable of solving a wide range of liquid refractometry problems.


Sensors ◽  
2009 ◽  
Vol 9 (12) ◽  
pp. 10411-10422 ◽  
Author(s):  
Wei Li ◽  
Xiaoping Lu ◽  
Yonggang Lin

2020 ◽  
Vol 15 (6) ◽  
pp. 687-692
Author(s):  
Yifan Ding ◽  
Haigang Hou ◽  
Qingwei Huang ◽  
Junlin Liu ◽  
Shahid Hussain ◽  
...  

Different grooves (v-shaped groove, trapezoidal groove and rectangular groove) are introduced into the traditional double-folded cantilever of Fabry–Perot Tunable Filter (FPTF) for the optical sensor. Using finite element simulation, the influence of groove geometry on the voltage–displacement relationship, stress distribution and reflector flatness of the FPTF are studied. The results show that the reflector supported by double folded cantilever with rectangular groove has a maximal displacement of 0.88 μm under 8 V driving voltage, which is 95% higher than double folded cantilever without groove. At 0.5 μm, the best flatness (warping angle of reflector) is only 0.0032° for reflector supported by double folded cantilever with rectangular groove, where the generated maximal stress in the double folded cantilever is 8.49 MPa. Compared with other double folded cantilevers with v-shaped groove, trapezoidal groove and without groove, the unique properties of double folded cantilever with rectangular groove are attributed to lower elastic modulus. The double folded cantilever with rectangular groove enlarges displacement results in wide range of bandpass wavelength of FPTF, and a best flatness to enhance the monochrome of bandpass wavelength.


Sign in / Sign up

Export Citation Format

Share Document