Delineation of suspended solids in river outflow from Hurricane Florence using GOES-16 ABI data

Author(s):  
Mark Lewis ◽  
Jason Jolliff ◽  
Sherwin Ladner ◽  
Sean McCarthy ◽  
Adam Lawson ◽  
...  
2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AJAY KUMAR RAJAWAT ◽  
PRAVEEN KUMAR

An attempt has been made to study the Physico-chemical condition of water of Yamuna River at Gokul Barrage, Mathura, (UP). The time period of study was July 2015 to June 2016. Three water samples were selected from different sites in each month for study. The parameters studied were Temperature, Turbidity, pH, DO, BOD, COD, Total Dissolved Solids and Suspended Solids. Almost all the parameters were found above the tolerance limit.


2020 ◽  
Vol 20 (3) ◽  
pp. 325-332
Author(s):  
Le Nhu Da ◽  
Le Thi Phuong Quynh ◽  
Phung Thi Xuan Binh ◽  
Duong Thi Thuy ◽  
Trinh Hoai Thu ◽  
...  

Recently, the Asian rivers have faced the strong reduction of riverine total suspended solids (TSS) flux due to numerous dam/reservoir impoundment. The Red river system is a typical example of the Southeast Asian rivers that has been strongly impacted by reservoir impoundment in both China and Vietnam, especially in the recent period. It is known that the reduction in total suspended solids may lead to the decrease of some associated elements, including nutrients (N, P, Si) which may affect coastal ecosystems. In this paper, we establish the empirical relationship between total suspended solids and total phosphorus concentrations in water environment of the Red river in its downstream section from Hanoi city to the Ba Lat estuary based on the sampling campaigns conducted in the dry and wet seasons in 2017, 2018 and 2019. The results show a clear relationship with significant coefficient between total suspended solids and total phosphorus in the downstream Red river. It is expressed by a simple equation y = 0.0226x0.3867 where x and y stand for total suspended solids and total phosphorus concentrations (mg/l) respectively with the r2 value of 0.757. This equation enables a reasonable prediction of total phosphorus concentrations of the downstream Red river when the observed data of total suspended solids concentrations are available. Thus, this work opens up the way for further studies on the calculation of the total phosphorus over longer timescales using daily available total suspended solids values.


Author(s):  
Truong Van Tuan ◽  
Irina Vladimirovna Volkova

Research was held in the estuary of the river Bach Dang (Dongbay community, Rakhtay district, Hai Phong, Vietnam) in June, 2012 - May, 2013. Concentration of lead was studied in water, suspended solids and bottom sediment. Clam beach (natural breeding environment of Meretrix lyrata ) was inspected regularly, every month. Water samples were taken 6 times from the bottom layer 10 cm down the bottom, once per 3 hours in each of 12 investigated zones. Bottom sediment samples were taken at the depth 2 cm. The findings show that lead accumulates mainly in suspended solids (23.3 mg/kg) and in bottom sediment (14.31 mg/kg), in water it is in small quantities (0.003 mg/kg). Analysis of bottom sediment samples taken in different places showed that they have even leadcontent, lead is distributed uniformly, localization of contaminations is not found. The results obtained can be assumed as the basis for investigating lead accumulation and its excretion by clam Meretrix lyrata organisms in the natural habitat.


2018 ◽  
Vol 69 (5) ◽  
pp. 1149-1151
Author(s):  
Laura Ruxandra Zicman ◽  
Elena Neacsu ◽  
Felicia Nicoleta Dragolici ◽  
Catalin Ciobanu ◽  
Gheorghe Dogaru ◽  
...  

Ultrafiltration of untreated and pretreated aqueous radioactive wastes was conducted using a spiral-wound polysulphonamide membrane. The influence of process factors on its performances was experimental studied and predicted. Permeate volumetric flux and permeate total suspended solids (TSS) were measured at different values of feed flow rate (7 and 10 m3/h), operating pressure (0.1-0.4 MPa), and feed TSS (15 and 60 mg/L). Permeate flux (42-200 L/(m2�h)) increased with feed flow rate and operating pressure as well as it decreased with an increase in feed TSS, whereas permeate TSS (0.1-33.2 mg/L) exhibited an opposite trend. A 23 factorial plan was used to establish correlations between dependent and independent variables of ultrafiltration process.


1997 ◽  
Vol 32 (1) ◽  
pp. 101-118 ◽  
Author(s):  
Q.J. ROCHFORT ◽  
W.E. Watt ◽  
J. Marsalek ◽  
B.C. Anderson ◽  
A.A. Crowder

Abstract Two subsurface flow constructed wetlands were tested for pollutant removal performance in conjunction with an on-line stormwater detention pond, in Kingston Township, Ontario. The 4.9 m2 wetland cells were filled with 9 mm limestone gravel, and planted with cattail, common reed and spike rush. Changes in nutrient (total organic carbon, PO43- and NH4+), suspended solids and metal (Cu, Pb, Zn) concentrations were used to assess performance. Contaminant removal occurred through a combination of physical, chemical and biological means. As with any biological system, variation in performance of stormwater wetlands can be expected to occur as a result of fluctuations in contaminant loading, contact time and ambient environmental conditions. Storm pond effluent was delivered in continuous flow through the wetlands (during baseflow and event conditions), with a detention time of 1 to 3 days. The wetlands were able to maintain removal rates of up to 39% for orthophosphate even during the more severe conditions of fall dieback. Average removal of suspended solids (46%) and dissolved metals (Cu 50%) remained similar throughout all tests. Organic carbon was reduced by less than 10% during these tests. Low nutrient levels in the pond effluent were supplemented by spiking with sources of carbon, nitrogen and phosphorus during pulsed loading conditions. Daily sampling produced a time series, which illustrated the rates of decline in concentration of nutrients. First order kinetic assimilation rates ranged from 1.7 d-1 for NH4002B to 0.12 d-1 for organic carbon, which were noticeably lower when compared with municipal and industrial wastewater treatment rates. Three methods of sizing stormwater wetlands (impervious surface area, volumetric load and kinetic reaction rates) were compared using the same design storm and data from this study. From this comparison it was seen that the kinetic sizing approach proved to be the most versatile, and allowed for adaptation to northern climatic conditions and anticipated nutrient loading.


2002 ◽  
Vol 2 (2) ◽  
pp. 91-98
Author(s):  
R. Winzenbacher ◽  
R. Schick ◽  
H.-H. Stabel ◽  
M. Jekel

Improved removal of particles during the treatment of natural aquatic suspensions has been achieved by pre-ozonation and the addition of small quantities of iron salts (βFe ≤ 0.1 mg.L-1; “Fe(III)-assisted filtration”) followed by rapid filtration. As shown by investigations on a large-scale installation at Lake Constance Water Supply, this procedure reliably reduces suspended solids by at least 2-3 powers of ten in long-term use. However, the high efficacy of Fe(III)-assisted filtration cannot be explained on the basis of known coagulation mechanisms (like adsorption-charge neutralization, co-precipitation). Instead, the essential step was found to be the conditioning of the filter medium by coating it with colloids containing Fe(OH)3, and this “Fe coating” process occurs only in the presence of alkaline earths (especially Ca2+). According to further experiments, the enhanced solid-liquid separation was ultimately traced to chemical interactions such as the formation of calcium-organic association structures between the iron hydroxides and other solids. For design of Fe(III)-assisted filtration steps, finally, a βCa/DOC ratio above 40 mg.mg-1 and pre-oxidation with ozone dosages not exceeding 2 mg O3/mg DOC was recommended.


Sign in / Sign up

Export Citation Format

Share Document