The study of laser rangefinder with dual branch flexible light guide

Author(s):  
Liao Tai-Shan ◽  
Chou Shih-Jie ◽  
Lee Long-Jeng
Author(s):  
M. Hibino ◽  
K. Irie ◽  
R. Autrata ◽  
P. schauer

Although powdered phosphor screens are usually used for scintillators of STEM, it has been found that the phosphor screen of appropriate thickness should be used depending on the accelerating voltage, in order to keep high detective quantum efficiency. 1 It has been also found that the variation in sensitivity, due to granularity of phosphor screens, makes the measurement of fine electron probe difficult and that the sensitivity reduces with electron irradiation specially at high voltages.In order to find out a preferable scintillator for STEM, single crystals of YAG (yttrium aluminum garnet), which are used for detecting secondary and backscattered electrons in SEM were investigated and compared with powdered phosphor screens, at the accelerating voltages of 100kV and 1 MV. A conventional electron detection system, consisting of scintillator, light guide and PMT (Hamamatsu Photonics R268) was used for measurements. Scintillators used are YAG single crystals of 1.0 to 3.2mm thicknesses (with surfaces matted for good interface to the light guide) and of 0.8mm thickness (with polished surface), and powdered P-46 phosphor screens of 0.07mm and 1.0mm thicknesses for 100kV and 1MV, respectively. Surfaces on electron-incidence side of all scintillators are coated with reflecting layers.


2018 ◽  
pp. 156-161
Author(s):  
Alexei K. Solovyov

Underground spaces in town centres present a big attraction for investors. However, they put special requirements to the internal environment. Those requirements can be fulfilled by means of daylighting. Examples of lighting of underground spaces are discussed. It is shown that the common systems of natural lighting are not always possible to use and cause big heat losses. Hollow light guide pipes allow avoid the shortcomings of common daylight systems. Method of calculation of daylight factors from hollow light guide pipes is shown. The results of calculation of daylight factors under the light guide pipes of different diameters in the different depths are presented.


2004 ◽  
Vol 58 (2) ◽  
pp. 220-225
Author(s):  
Yuji Abe ◽  
Hidenobu Todoroki

2021 ◽  
pp. 096739112098650
Author(s):  
Dah Hee Kim ◽  
Young Seok Song

The purpose of this study is to integrate a polymeric film onto a mold to impede thermal heat transfer during resin infusion. A thin plastic plate was fabricated by using microinjection molding. A polyimide (PI) film was laminated onto a mold in an effort to produce a thin light guide plate (LGP). The film could decelerate the solidification of molten polymer in the cavity of mold and enhance the wall slip of resin on the mold. The insulation effect was modeled numerically. The surface roughness and pattern transfer characteristics of the LGP were evaluated. It was found that the fluidity of the resin increased due to the decreased skin layer during mold filling. The results showed that the strategy proposed in this study could help decrease the thickness of LGP effectively when manufacturing the part via injection molding.


1988 ◽  
Vol 17 (4) ◽  
pp. 91-93
Author(s):  
D. P. Juyal ◽  
N. K. Barthwal ◽  
A. L. Singh ◽  
S. P. Gupta ◽  
M. T. Rudrappa ◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 30993-31009
Author(s):  
Jihoon Lee ◽  
Suwon Lee ◽  
Youngjun Lee ◽  
Youdan Kim ◽  
Yongjun Heo ◽  
...  

2016 ◽  
Vol 47 (1) ◽  
pp. 1399-1401 ◽  
Author(s):  
Gun-Wook Yoon ◽  
Seok-Won Bae ◽  
Hyun-Seung Cho ◽  
Jun-Bo Yoon

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 192
Author(s):  
An-Chi Wei ◽  
Wei-Jie Chang ◽  
Jyh-Rou Sze

In this paper, we propose a side-absorption concentrated module with diffractive grating as a spectral-beam-splitter to divide sunlight into visible and infrared parts. The separate solar energy can be applied to different energy conversion devices or diverse applications, such as hybrid PV/T solar systems and other hybrid-collecting solar systems. Via the optimization of the geometric parameters of the diffractive grating, such as the grating period and height, the visible and the infrared bands can dominate the first and the zeroth diffraction orders, respectively. The designed grating integrated with the lens and the light-guide forms the proposed module, which is able to export visible and infrared light individually. This module is demonstrated in the form of an array consisting of seven units, successfully out-coupling the spectral-split beams by separate planar ports. Considering the whole solar spectrum, the simulated and measured module efficiencies of this module were 45.2% and 34.8%, respectively. Analyses of the efficiency loss indicated that the improvement of the module efficiency lies in the high fill-factor lens array, the high-reflectance coating, and less scattering.


Sign in / Sign up

Export Citation Format

Share Document