AC conductivity activation energy of composite cellulose-synthetic ester MIDEL 7131-water nanodrops

Author(s):  
Przemyslaw Rogalski
1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2021 ◽  
Vol 904 ◽  
pp. 363-368
Author(s):  
Xiao Yan Zhou ◽  
Bang Sheng Yin

The 3 at% Al doped ZnO thin films were deposited on p-Si substrate with a native SiO2 layer by spray pyrolysis method. Low temperature conduction behaviors were studied by analysis of impedance spectroscopy and low temperature ac conductivity. The results of impedance spectroscopy showed that the grain boundaries contributed to the resistivity of Al doped ZnO/SiO2/p-Si heterojunction. The calculated activation energy was 0.073 eV for grain boundaries. The equivalent circuit to demonstrate the electrical properties of Al doped ZnO/SiO2/p-Si heterojunction was a series connection of two parallel combination circuits of a resistor and a universal capacitor. Low temperature ac conductivity measurements indicated that the conductivity increased with temperature. Low temperature conductivity mechanism was electron conductivity, and the activation energy was 0.086 eV.


1986 ◽  
Vol 70 ◽  
Author(s):  
J. Kolodzey ◽  
S. Aljishi ◽  
Z E. Smith ◽  
V. Chu ◽  
R. Schwarz ◽  
...  

ABSTRACTThe effects of illumination on the optical and electronic properties of narrow gap hydrogenated and fluorinated amorphous Si-Ge (a-Si1-xGex:H, F) alloys have been evaluated. A series of alloys with optical gaps ranging from 1.30 eV to 1.64 eV has been light soaked at ∼1 sun intensity for 354 hours. Measurements of sub-gap absorption, photo- and dark conductivities and dark conductivity activation energy were made on alloys in the annealed and the light-soaked states. The results indicate that samples with optical gaps ≳ 1.4 eV degrade significantly. The 1.3 eV sample shows no degradation in its optical or electronic properties except for a factor of 5 increase in the dark conductivity.


1998 ◽  
Vol 36 (5-6) ◽  
pp. 290-293 ◽  
Author(s):  
Jean-Claude M'Peko ◽  
A.Rabdel Ruiz-Salvador ◽  
Gerardo Rodrı́guez-Fuentes

Sign in / Sign up

Export Citation Format

Share Document