VIRUS2: a next generation replicated integral field spectrograph with wide field and broad wavelength coverage

Author(s):  
Gary J. Hill ◽  
Hanshin Lee ◽  
Brian L. Vattiat ◽  
John M. Good ◽  
Jason Ramsey ◽  
...  
2021 ◽  
Vol 162 (6) ◽  
pp. 298
Author(s):  
Gary J. Hill ◽  
Hanshin Lee ◽  
Phillip J. MacQueen ◽  
Andreas Kelz ◽  
Niv Drory ◽  
...  

Abstract The Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) is undertaking a blind wide-field low-resolution spectroscopic survey of 540 deg2 of sky to identify and derive redshifts for a million Lyα-emitting galaxies in the redshift range 1.9 < z < 3.5. The ultimate goal is to measure the expansion rate of the universe at this epoch, to sharply constrain cosmological parameters and thus the nature of dark energy. A major multiyear Wide-Field Upgrade (WFU) of the HET was completed in 2016 that substantially increased the field of view to 22′ diameter and the pupil to 10 m, by replacing the optical corrector, tracker, and Prime Focus Instrument Package and by developing a new telescope control system. The new, wide-field HET now feeds the Visible Integral-field Replicable Unit Spectrograph (VIRUS), a new low-resolution integral-field spectrograph (LRS2), and the Habitable Zone Planet Finder, a precision near-infrared radial velocity spectrograph. VIRUS consists of 156 identical spectrographs fed by almost 35,000 fibers in 78 integral-field units arrayed at the focus of the upgraded HET. VIRUS operates in a bandpass of 3500−5500 Å with resolving power R ≃ 800. VIRUS is the first example of large-scale replication applied to instrumentation in optical astronomy to achieve spectroscopic surveys of very large areas of sky. This paper presents technical details of the HET WFU and VIRUS, as flowed down from the HETDEX science requirements, along with experience from commissioning this major telescope upgrade and the innovative instrumentation suite for HETDEX.


2016 ◽  
Vol 11 (S321) ◽  
pp. 288-288
Author(s):  
N. F. Boardman ◽  
A. Weijmans ◽  
R. C. E. van den Bosch ◽  
L. Zhu ◽  
A. Yildirim ◽  
...  

Much progress has been made in recent years towards understanding how early-type galaxies (ETGs) form and evolve. SAURON (Bacon et al. 2001) integral-field spectroscopy from the ATLAS3D survey (Cappellari et al. 2011) has suggested that less massive ETGs are linked directly to spirals, whereas the most massive objects appear to form from a series of merging and accretion events (Cappellari et al. 2013). However, the ATLAS3D data typically only extends to about one half-light radius (or effective radius, Re), making it unclear if this picture is truly complete.


2010 ◽  
Author(s):  
Katherine B. Follette ◽  
Laird M. Close ◽  
Derek Kopon ◽  
Jared R. Males ◽  
Victor Gasho ◽  
...  

2020 ◽  
Vol 645 ◽  
pp. A12
Author(s):  
B. Balmaverde ◽  
A. Capetti ◽  
A. Marconi ◽  
G. Venturi ◽  
M. Chiaberge ◽  
...  

We present the final observations of a complete sample of 37 radio galaxies from the Third Cambridge Catalogue (3C) with redshift < 0.3 and declination < 20° obtained with the VLT/MUSE optical integral field spectrograph. These data were obtained as part of the MUse RAdio Loud Emission line Snapshot (MURALES) survey with the main goal of exploring the AGN feedback process in the most powerful radio sources. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to the unprecedented depth these observations reveal emission line regions (ELRs) extending several tens of kiloparsec in most objects. The gas velocity shows ordered rotation in 25 galaxies, but in several sources it is highly complex. We find that the 3C sources show a connection between radio morphology and emission line properties. In the ten FR I sources the line emission region is generally compact, only a few kpc in size; only in one case does it exceed the size of the host. Conversely, all but two of the FR II galaxies show large-scale structures of ionized gas. The median extent is 16 kpc with the maximum reaching a size of ∼80 kpc. There are no apparent differences in extent or strength between the ELR properties of the FR II sources of high and low gas excitation. We confirm that the previous optical identification of 3C 258 is incorrect: this radio source is likely associated with a quasi-stellar object at z ∼ 1.54.


Author(s):  
M. Mingozzi ◽  
G. Venturi ◽  
F. Mannucci ◽  
A. Marconi ◽  
G. Cresci

The central regions of Seyfert galaxies, comprising broad and narrow line regions and the inner parts of galaxy disk and bulge, is characterized by a complex interplay among many physical effects. Specifically, it is shaped by the influence of the central black hole, producing ionization by an hard continuum and gas outflows. The integral-field spectrograph MUSE at the ESO VLT allows to carry out a detailed study of these regions to obtain their ionization, dynamical, and metallicity properties. Here we present some highlights of the MAGNUM survey which is designed to study the central regions of a sample of nearby (D > 500 pc) Seyfert galaxies. We describe the rationale of the survey, the data analysis techniques used to extract information on ionization and dynamics, and the results for one galaxy, Centaurus A.


2012 ◽  
Vol 427 (4) ◽  
pp. 3134-3144 ◽  
Author(s):  
M. Boldrin ◽  
C. Giocoli ◽  
M. Meneghetti ◽  
L. Moscardini

2018 ◽  
Vol 130 (988) ◽  
pp. 065001 ◽  
Author(s):  
Seth R. Meeker ◽  
Benjamin A. Mazin ◽  
Alex B. Walter ◽  
Paschal Strader ◽  
Neelay Fruitwala ◽  
...  

Author(s):  
Sebastiaan Y. Haffert ◽  
Jared Males ◽  
Laird Close ◽  
Joseph Long ◽  
Lauren Schatz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document