scholarly journals Transmission parameters of an anisotropic layered structure in the waveguide

Author(s):  
Andrzej Dukata ◽  
Waldemar Susek
Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


PIERS Online ◽  
2008 ◽  
Vol 4 (5) ◽  
pp. 546-550 ◽  
Author(s):  
João R. Canto ◽  
Sérgio A. Matos ◽  
Carlos R. Paiva ◽  
Afonso M. Barbosa
Keyword(s):  

1993 ◽  
Vol 18 ◽  
pp. 27-32
Author(s):  
Yasuaki Nohguchi ◽  
Takashi Ikarashi ◽  
Osamu Abe ◽  
Atsushi Sato

A striped pattern can be seen by spraying ink on a vertical wall of a snow pit to observe the layered structure of a snow cover. This pattern is caused by variations of snowfall in time, particularly pauses in snowfall, and its structure is related to a kind of fractal. In this paper, we consider snowfall and snow cover from a viewpoint of fractals and show that the layered structure of snow cover is a record of fractals on atmospheric-turbulence phenomena through the time variation of snowfall.


2012 ◽  
Vol 27 (7) ◽  
pp. 726-730 ◽  
Author(s):  
Li-Chao ZONG ◽  
Jiang-Tao ZENG ◽  
Su-Chuan ZHAO ◽  
Wei RUAN ◽  
Guo-Rong LI

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Buddhadeb Roy ◽  
Shailja Dubey ◽  
Amalendu Ghosh ◽  
Shalu Misra Shukla ◽  
Bikash Mandal ◽  
...  

AbstractLeaf curl, a whitefly-borne begomovirus disease, is the cause of frequent epidemic in chili. In the present study, transmission parameters involved in tripartite interaction are estimated to simulate disease dynamics in a population dynamics model framework. Epidemic is characterized by a rapid conversion rate of healthy host population into infectious type. Infection rate as basic reproduction number, R0 = 13.54, has indicated a high rate of virus transmission. Equilibrium population of infectious host and viruliferous vector are observed to be sensitive to the immigration parameter. A small increase in immigration rate of viruliferous vector increased the population of both infectious host and viruliferous vector. Migrant viruliferous vectors, acquisition, and transmission rates as major parameters in the model indicate leaf curl epidemic is predominantly a vector -mediated process. Based on underlying principles of temperature influence on vector population abundance and transmission parameters, spatio-temporal pattern of disease risk predicted is noted to correspond with leaf curl distribution pattern in India. Temperature in the range of 15–35 °C plays an important role in epidemic as both vector population and virus transmission are influenced by temperature. Assessment of leaf curl dynamics would be a useful guide to crop planning and evolution of efficient management strategies.


Sign in / Sign up

Export Citation Format

Share Document