In situ TEM Studies of agglomeration of sub-nanometer Ru layers in Ru/C multilayers

Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.

2009 ◽  
Vol 1216 ◽  
Author(s):  
Fu Tang ◽  
Gwo Ching Wang ◽  
Toh-Ming Lu

AbstractWe describe the growth of novel ultrathin Mg crystalline nanoblades by oblique angle vapor deposition. These nanoblades were then coated with catalyst Pd and hydrogenated into magnesium hydride MgH2. In situ thermal desorption spectroscopy study showed a low H desorption temperature at ∼365 K. In situ reflection high energy electron diffraction patterns were used to study the temperature dependent structure and composition changes during the de-hydrogenation of Pd coated MgH2 nanoblades. The diffraction rings reveal the formation of alloys of Pd and Mg when the temperature is over ∼480 K. Transmission electron microscopy diffraction also supports the formation of Pd and Mg alloys. This alloying reduces the cycling capability of Mg hydride. The de-hydrogenation of MgH2 introduces a strain at the bilayer interface between MgH2 and Mg resultant from 30% volume reduction from MgH2 to Mg and formed curved nanoblades as evident by scanning electron microscopy images. Designing factors of recyclable simple hydrides will be discussed.


2003 ◽  
Vol 779 ◽  
Author(s):  
P. Li ◽  
J.M. Howe

AbstractDissociation of perfect 1/2<110> single dislocations into two 1/6<112> Shockley partial dislocations in ZrN was observed by transmission electron microscopy (TEM). The 1/2<110> single dislocations have a super-jog character and are not coplanar with the dissociated Shockley partials. This sessile arrangement of dislocations may be responsible for the brittleness of ZrN. The wide separation of the partial dislocations bounding stacking faults indicates that the stacking-faults energy (SFE) is low in ZrN. The low SFE can be explained on the basis of a high vacancy concentration, which was confirmed by the appearance of diffuse intensity maxima in electron diffraction patterns due to short-range ordering (SRO) of N vacancies. In-situ heating experiments in the TEM revealed that the diffuse intensity maxima disappear during heating and reappear on cooling. This indicates that N (or N vacancy) diffusion scrambles the SRO arrangement of N vacancies during heating. The width of the stacking faults in ZrN increases with temperature, indicating that the SFE decreases as the vacancy concentration increases.


1995 ◽  
Vol 382 ◽  
Author(s):  
Toshio Itoh ◽  
Robert Sinclair

ABSTRACTReactions between Fe and amorphous carbon (a-C) below 600ºC have been investigated. In situ annealing in a transmission electron microscopy (TEM) was performed on a-C/Fe/a-C trilayer films deposited by DC sputtering. As-deposited films showed a well defined tri-layered structure and an average Fe grain size of about 50Å. Cementite (Fe3C) grains appeared in the Fe layer by annealing around 300ºC. As the annealing temperature was raised, the number and size of the cementite grains increased. When the annealing temperature reached 500ºC, the Fe layer completely turned into cementite with an average grain size of 1000Å. At this point the film still kept a well defined tri-layered structure even though some parts of the cementitelayer agglomerated. Above 500ºC, the cementite layer started to “move” into the a-C leaving graphite behind. Graphite formed in this process is strongly textured with the (0002) graphite basal planes parallel to the surface of the moving cementite. This process is concluded to be carbide mediated crystallization of a-C, similar to silicide mediated crystallization of silicon in Ni-Si and Pd-Si systems.


2009 ◽  
Vol 1216 ◽  
Author(s):  
Akifumi Ono ◽  
Shigehito Isobe ◽  
Yongming Wang ◽  
Naoyuki Hashimoto ◽  
Somei Ohnuki

AbstractIn-situ observation on the catalytic effect of Nb2O5 in MgH2 was carried out by using transmission electron microscopy (TEM). We prepared two kinds of samples, because we tried to observe the reaction from two kinds of viewpoints. MgH2 catalyzed with 1 mol% of Nb2O5 was prepared for an overall viewpoint on the desorption process of MgH2 with catalyst by conventional TEM. The dehydrogenation of the 1 mol% sample started at 150 °C and Mg nano-size particles were formed. However, Nb2O5 was not confirmed in diffraction patterns and images, because it was highly dispersed by ball-milled. So MgH2 catalyzed with 10 mol% of Nb2O5 was prepared for local viewpoint to focus the boundary between the catalyst and the Mg phase by high voltage electron micro scope (HVEM). The sample mixed in mortar was prepared for this, because it was difficult to find the boundary in the sample ball-milled. The high resolution images of the 10 mol% sample revealed that the dehydrogenation started from the interface of MgH2 and Nb2O5. The result suggested that the dehydrogenation could proceed with hydrogen diffusion from MgH2 phase to the interface between Mg and Nb2O5.


1998 ◽  
Vol 13 (6) ◽  
pp. 1679-1687
Author(s):  
R. J. Gonzalez ◽  
A. L. Ritter

Small titania particles, prepared by hydrolysis and condensation using in situ steric stabilization, have been studied by high-energy, transmission, electron energy-loss spectroscopy. Electron diffraction patterns and energy-loss spectra as a function of momentum transfer were measured for as-prepared particles (amorphous titania), particles annealed at 600 °C (primarily anatase), and particles annealed at 1000 °C (primarily rutile). The energy-loss spectra at low momentum disagreed with the loss function calculated from optical data (rutile) and disagreed with theory (rutile and anatase). The data was fit by an Elliot-like model for a resonant exciton interacting with a continuum of levels. The translational effective mass of the exciton derived from the fitting was quite large, indicating that it was self-trapped.


1991 ◽  
Vol 238 ◽  
Author(s):  
F. D. Tichelaar ◽  
F. W. Schapink

ABSTRACTIn this paper the structure of a (011)-Σ=3 twist boundary in ordered Cu3Au is analysed geometrically. Wrong nearest-neighbour bonds can be avoided by facetting on an atomic scale along common {112} planes, together with a rigid-body translation parallel to one of the facets as measured in earlier work. In the specimen different translational states were found in different areas of the [165]-Σ=3 boundary by transmission electron microscopy (TEM). One of the translations was in agreement with the model, the other was associated with a presumably energetically more unfavourable structure. The in situ observation at 230 °C of the motion of the dislocation separating the different boundary areas was associated with a transformation of the boundary structure with the higher energy into the more favourable structure. Therefore, it is likely that the driving force of the dislocation motion was a difference in boundary energy.


Author(s):  
Charles W. Allen

Irradiation effects studies employing TEMs as analytical tools have been conducted for almost as many years as materials people have done TEM, motivated largely by materials needs for nuclear reactor development. Such studies have focussed on the behavior both of nuclear fuels and of materials for other reactor components which are subjected to radiation-induced degradation. Especially in the 1950s and 60s, post-irradiation TEM analysis may have been coupled to in situ (in reactor or in pile) experiments (e.g., irradiation-induced creep experiments of austenitic stainless steels). Although necessary from a technological point of view, such experiments are difficult to instrument (measure strain dynamically, e.g.) and control (temperature, e.g.) and require months or even years to perform in a nuclear reactor or in a spallation neutron source. Consequently, methods were sought for simulation of neutroninduced radiation damage of materials, the simulations employing other forms of radiation; in the case of metals and alloys, high energy electrons and high energy ions.


Author(s):  
Joseph J. Comer ◽  
Charles Bergeron ◽  
Lester F. Lowe

Using a Van De Graaff Accelerator thinned specimens were subjected to bombardment by 3 MeV N+ ions to fluences ranging from 4x1013 to 2x1016 ions/cm2. They were then examined by transmission electron microscopy and reflection electron diffraction using a 100 KV electron beam.At the lowest fluence of 4x1013 ions/cm2 diffraction patterns of the specimens contained Kikuchi lines which appeared somewhat broader and more diffuse than those obtained on unirradiated material. No damage could be detected by transmission electron microscopy in unannealed specimens. However, Dauphiné twinning was particularly pronounced after heating to 665°C for one hour and cooling to room temperature. The twins, seen in Fig. 1, were often less than .25 μm in size, smaller than those formed in unirradiated material and present in greater number. The results are in agreement with earlier observations on the effect of electron beam damage on Dauphiné twinning.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Sign in / Sign up

Export Citation Format

Share Document