Oil pollution hotspots on the Caspian Sea surface identified using satellite remote sensing

Author(s):  
Marina I. Mityagina ◽  
Olga Y. Lavrova
2019 ◽  
Vol 25 ◽  
pp. 91-105 ◽  
Author(s):  
Marina I. Mityagina ◽  
Olga Yu. Lavrova ◽  
Andrey G. Kostianoy

Over the years, oil pollution has been the primary environmental problem of the Caspian Sea. In this paper, we present the results of our satellite survey in 2019 of the whole aquatic area of the Caspian Sea. These results reveal the spatial and temporal distribution of hydrocarbon films of various origins on the sea surface. Our primary attention was focused on the main types of petroleum hydrocarbon films polluting the sea surface. They get into the aquatic area via several different ways: (i) from natural marine hydrocarbon emissions from the seabed; (ii) from the mouths of numerous mud volcanoes; (iii) from offshore oil production and transportation; (iv) from oily wastewaters discharged by ships. We mapped the petroleum hydrocarbon pollution of the Caspian Sea surface on the base of satellite data. For each type of pollution, specific manifestation features were revealed, regions of regular pollution occurrence were outlined, and polluted areas were estimated. The relative contribution of every kind of pollution to the total oil pollution of the Caspian Sea is assessed on the base of satellite data. Comparison with the previous results of our long-term survey of the Caspian Sea is made. The problem of reliability of quantitative estimates of surfaced oil volumes on the base of slick areas seen in the satellite images is discussed.


Ocean Science ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 311-329 ◽  
Author(s):  
R. A. Ibrayev ◽  
E. Özsoy ◽  
C. Schrum ◽  
H. İ. Sur

Abstract. A three-dimensional primitive equation model including sea ice thermodynamics and air-sea interaction is used to study seasonal circulation and water mass variability in the Caspian Sea under the influence of realistic mass, momentum and heat fluxes. River discharges, precipitation, radiation and wind stress are seasonally specified in the model, based on available data sets. The evaporation rate, sensible and latent heat fluxes at the sea surface are computed interactively through an atmospheric boundary layer sub-model, using the ECMWF-ERA15 re-analysis atmospheric data and model generated sea surface temperature. The model successfully simulates sea-level changes and baroclinic circulation/mixing features with forcing specified for a selected year. The results suggest that the seasonal cycle of wind stress is crucial in producing basin circulation. Seasonal cycle of sea surface currents presents three types: cyclonic gyres in December–January; Eckman south-, south-westward drift in February–July embedded by western and eastern southward coastal currents and transition type in August–November. Western and eastern northward sub-surface coastal currents being a result of coastal local dynamics at the same time play an important role in meridional redistribution of water masses. An important part of the work is the simulation of sea surface topography, yielding verifiable results in terms of sea level. The model successfully reproduces sea level variability for four coastal points, where the observed data are available. Analyses of heat and water budgets confirm climatologic estimates of heat and moisture fluxes at the sea surface. Experiments performed with variations in external forcing suggest a sensitive response of the circulation and the water budget to atmospheric and river forcing.


2006 ◽  
Vol 26 (4) ◽  
pp. 347
Author(s):  
Ahmad Khatoonabadai ◽  
Ahmadreza R. Mohammadi Dehcheshmeh

2020 ◽  
Author(s):  
Olga Lavrova ◽  
Andrey Kostianoy

<p>Internal waves (IWs) are an intrinsic feature of all density stratified water bodies: oceans, seas, lakes and reservoirs. IWs occur due to various causes. Among them are tides and inertial motions, variations in atmospheric pressure and wind, underwater earthquakes, water flows over bottom topography, anthropogenic factors, etc. In coastal areas of oceans and tidal seas,  IWs induced by tidal currents over shelf edge predominate. Such IWs are well-studied in multiple field, laboratory and numerical experiments. However, the data on IWs in non-tidal seas, such as the Black, Baltic and Caspian Seas, are scarce. Meanwhile, our multi-year satellite observations prove IWs to be quite a characteristic hydrophysical phenomenon of the Caspian Sea. The sea is considered non-tidal because tide height does not exceed 12 cm at the coastline. And yet surface manifestations of IWs are regularly observed in satellite data, both radar and visible. The goal of our study was to reveal spatial, seasonal and interannual variability of IW surface manifestations in the Caspian Sea in the periods of 1999-2012 and 2018-2019 from the analysis of satellite data. All available satellite radar and visible data were used, that is data from ERS1/2 SAR; Envisat ASAR; Sentinel-1A,1B SAR-C; Landsat-4,5 TM; Landsat-7 ETM+; Landsat-8 OLI; Sentinel-2A,2B MSI sensors. During the year, IWs were observed from the beginning of May to mid-September. In certain years, depending on hydrometeorological conditions, such as water heating, wind field, etc., no IWs could be seen in May or September. IWs regularly occur in the east of Middle Caspian and in the northeast of South Caspian. In North Caspian, due to its shallowness and absence of pronounced stratification, IWs are not generated, at least their surface signatures cannot be found in satellite data. In the west of the sea, IWs are scarcely observed, primarily at the beginning of the summer season. IW trains propagate toward the coast, their generation sites are mainly over the depths of 50-200 m.</p><p>According to the available data for the studied periods, the time of the first appearance of IW signatures differs significantly from year to year. For example, in 1999 and 2000 it happened only in July.</p><p>Since no in situ measurements were conducted in the sites of regular IW manifestations, an attempt  was made to establish the dependence of IW occurrence frequency  on seasonal and interannual variations of sea surface temperature, an indirect indicator of the depth of the diurnal or seasonal thermocline, that is where IW were generated. Sea surface temperature was also estimated from satellite data.</p><p>Another issue addressed in the work was the differentiation between the sea surface signatures of IWs in the atmosphere and the sea. The Caspian Sea is known for their close similarity in spatial characteristics.</p><p>The work was carried out with financial support of the Russian Science Foundation grant #19-77-20060.  Processing of satellite data was carried out by Center for Collective Use “IKI-Monitoring” with the use of “See The Sea” system, that was implemented in frame of Theme “Monitoring”, State register No. 01.20.0.2.00164.</p>


2012 ◽  
Vol 9 (11) ◽  
pp. 16663-16704
Author(s):  
S. A. G. Leroy ◽  
H. A. K. Lahijani ◽  
J.-L. Reyss ◽  
F. Chalié ◽  
S. Haghani ◽  
...  

Abstract. We analysed dinoflagellate cyst assemblages in four short sediment cores, two of them dated by radionuclides, taken in the south basin of the Caspian Sea. The interpretation of the four sequences is supported by a collection of 27 lagoonal or marine surface sediment samples. A sharp increase in the biomass of the dinocyst occurs after 1967, especially owing to Lingulodinium machaerophorum. Considering nine other cores covering parts or the whole of Holocene, this species started to develop in the Caspian Sea only during the last three millennia. By analysing instrumental data and collating existing reconstructions of sea level changes over the last few millennia, we show that the main forcing of the increase of L. machaerophorum percentages and of the recent dinocyst abundance is global climate change, especially sea surface temperature increase. Sea level fluctuations likely have a minor impact. We argue that the Caspian Sea has entered the Anthropocene.


Author(s):  
Marina Vladimirovna KHLOPKOVA

The article summarizes data on the effects of oil products and drilling fluids on the inhabitants of the Caspian Sea., Compared to the Caspian autochthons, invasive species are more resistant to oil pollution. It leads to changes in the species composition of the biocenoses.


Sign in / Sign up

Export Citation Format

Share Document