A study on shunt damping performance, current servo response, and energy harvesting analysis for voice coil motors

Author(s):  
Kazuya Hirasawa ◽  
Kentaro Takagi ◽  
Tsuyoshi Inoue
2014 ◽  
Vol 333 (8) ◽  
pp. 2185-2195 ◽  
Author(s):  
Stephen J. Elliott ◽  
Michele Zilletti

2008 ◽  
Vol 20 (5) ◽  
pp. 515-527 ◽  
Author(s):  
J.R. Liang ◽  
W.H. Liao

This article aims to provide a comparative study on the functions of piezoelectric energy harvesting, dissipation, and their effects on the structural damping of vibrating structures. Energy flow in piezoelectric devices is discussed. Detailed modeling of piezoelectric materials and devices are provided to serve as a common base for both analyses of energy harvesting and dissipation. Based on these foundations, two applications of standard energy harvesting (SEH) and resistive shunt damping (RSD) are investigated and compared. Furthermore, in the application of synchronized switch harvesting on inductor (SSHI), it is shown that the two functions of energy harvesting and dissipation are coexistent. Both of them bring out structural damping. Further analyses and optimization for the SSHI technique are performed.


Author(s):  
Alper Erturk ◽  
Onur Bilgen ◽  
Daniel J. Inman

This paper presents the performance analysis of the single crystal piezoelectric ceramic PMN-PZT (where PMN stands for lead magnesium niobate and PZT stands for lead zirconate titanate) for piezoelectric energy harvesting. Unimorph cantilevers using PMN-PZT layers with Al (aluminum) and SS (stainless steel) substrates are tested under base excitation for a wide range of load resistance (from 10 ohms to 2.2 Mohms). Electrical power generation performance of the unimorphs using PMN-PZT is compared against that of the unimorphs using the conventional piezoelectric ceramic PZT-5H with Al and SS substrates. For both substrates, it is observed that the power density (power output per device volume) and the specific power (power output per device mass) results of the unimorphs using PMN-PZT are about two orders of magnitude larger than those of the unimorphs using PZT-5H. Outstanding power generation performance of the unimorphs with PMN-PZT is associated with stronger resistive shunt damping effect compared to unimorphs with PZT-5H. In addition to the experimental analyses and comparisons, power generation and shunt damping results of a single crystal unimorph are successfully predicted by using a distributed parameter electromechanical model. Results show that single crystal PMN-PZT is a very strong interface for piezoelectric energy harvesting and shunt damping. However, the improved power generation and shunt damping performance of PMN-PZT comes with reduced robustness due to the brittle nature of the single crystalline structure.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2012 ◽  
Vol 2 (5) ◽  
pp. 252-255
Author(s):  
Rudresha K J Rudresha K J ◽  
◽  
Girisha G K Girisha G K

Sign in / Sign up

Export Citation Format

Share Document