Automated 3D geometrical measurement system for mobile and large-scale conical workpiece based on laser scanning technologies

2021 ◽  
Author(s):  
Sen Zhou ◽  
Lei Tao ◽  
Xiaoli Wu ◽  
Jun Xiong
2020 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Sergej Medved ◽  
Daša Krapež Tomec ◽  
Angela Balzano ◽  
Maks Merela

Since invasive alien species are one of the main causes of biodiversity loss in the region and thus of changes in ecosystem services, it is important to find the best possible solution for their removal from nature and the best practice for their usability. The aim of the study was to investigate their properties as components of wood-plastic composites and to investigate the properties of the wood-plastic composites produced. The overall objective was to test the potential of available alien plant species as raw material for the manufacture of products. This would contribute to sustainability and give them a better chance of ending their life cycle. One of the possible solutions on a large scale is to use alien wood species for the production of wood plastic composites (WPC). Five invasive alien hardwood species have been used in combination with polyethylene powder (PE) and maleic anhydride grafted polyethylene (MAPE) to produce various flat pressed WPC boards. Microstructural analyses (confocal laser scanning microscopy and scanning electron microscopy) and mechanical tests (flexural strength, tensile strength) were performed. Furthermore, measurements of density, thickness swelling, water absorption and dimensional stability during heating and cooling were carried out. Comparisons were made between the properties of six WPC boards (five alien wood species and mixed boards). The results showed that the differences between different invasive alien wood species were less obvious in mechanical properties, while the differences in sorption properties and dimensional stability were more significant. The analyses of the WPC structure showed a good penetration of the polymer into the lumens of the wood cells and a fine internal structure without voids. These are crucial conditions to obtain a good, mechanically strong and water-resistant material.


2016 ◽  
Vol 46 (9) ◽  
pp. 1138-1144 ◽  
Author(s):  
M. Maltamo ◽  
O.M. Bollandsås ◽  
T. Gobakken ◽  
E. Næsset

This study considered airborne laser scanning (ALS) based aboveground biomass (AGB) prediction in mountain forests. The study area consisted of a long transect from southern Norway to northern parts of the country with wide ranges of elevation along a long latitudinal gradient (58°N–69°N). This transect was covered by ALS data and field data from 238 plots. AGB was modeled using different types of predictor variables, namely ALS metrics, variables related to growing conditions (elevation, latitude, and climatic variables), and tree species information. Modelling of AGB in the long transect covering diverse mountainous forest conditions was challenging: the RMSE values were rather large (37%–70%). The effects of growing conditions on model predictions were minor. However, species information was essential to improve accuracy. The analysis revealed that when doing inventories of spruce-dominated areas, all plots should be pooled together when the models are developed, whereas if pine or deciduous species dominate the area in question, separate dominant species-wise models should be constructed.


2019 ◽  
Vol 11 (12) ◽  
pp. 1453 ◽  
Author(s):  
Shanxin Zhang ◽  
Cheng Wang ◽  
Lili Lin ◽  
Chenglu Wen ◽  
Chenhui Yang ◽  
...  

Maintaining the high visual recognizability of traffic signs for traffic safety is a key matter for road network management. Mobile Laser Scanning (MLS) systems provide efficient way of 3D measurement over large-scale traffic environment. This paper presents a quantitative visual recognizability evaluation method for traffic signs in large-scale traffic environment based on traffic recognition theory and MLS 3D point clouds. We first propose the Visibility Evaluation Model (VEM) to quantitatively describe the visibility of traffic sign from any given viewpoint, then we proposed the concept of visual recognizability field and Traffic Sign Visual Recognizability Evaluation Model (TSVREM) to measure the visual recognizability of a traffic sign. Finally, we present an automatic TSVREM calculation algorithm for MLS 3D point clouds. Experimental results on real MLS 3D point clouds show that the proposed method is feasible and efficient.


Author(s):  
W. Ostrowski ◽  
M. Pilarska ◽  
J. Charyton ◽  
K. Bakuła

Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term “3D building models” can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.


Author(s):  
S. Gao ◽  
Z. Ye ◽  
C. Wei ◽  
X. Liu ◽  
X. Tong

<p><strong>Abstract.</strong> The high-speed videogrammetric measurement system, which provides a convenient way to capture three-dimensional (3D) dynamic response of moving objects, has been widely used in various applications due to its remarkable advantages including non-contact, flexibility and high precision. This paper presents a distributed high-speed videogrammetric measurement system suitable for monitoring of large-scale structures. The overall framework consists of hardware and software two parts, namely observation network construction and data processing. The core component of the observation network is high-speed cameras to provide multiview image sequences. The data processing part automatically obtains the 3D structural deformations of the key points from the captured image sequences. A distributed parallel processing framework is adopted to speed up the image sequence processing. An empirical experiment was conducted to measure the dynamics of a double-tube five-layer building structure on the shaking table using the presented videogrammetric measurement system. Compared with the high-accuracy total station measurement, the presented system can achieve a sub-millimeter level of coordinates discrepancy. The 3D deformation results demonstrate the potential of the non-contact high-speed videogrammetric measurement system in dynamic monitoring of large-scale shake table tests.</p>


2011 ◽  
Vol 105 (2) ◽  
pp. 964-980 ◽  
Author(s):  
Andrew Miri ◽  
Kayvon Daie ◽  
Rebecca D. Burdine ◽  
Emre Aksay ◽  
David W. Tank

The advent of methods for optical imaging of large-scale neural activity at cellular resolution in behaving animals presents the problem of identifying behavior-encoding cells within the resulting image time series. Rapid and precise identification of cells with particular neural encoding would facilitate targeted activity measurements and perturbations useful in characterizing the operating principles of neural circuits. Here we report a regression-based approach to semiautomatically identify neurons that is based on the correlation of fluorescence time series with quantitative measurements of behavior. The approach is illustrated with a novel preparation allowing synchronous eye tracking and two-photon laser scanning fluorescence imaging of calcium changes in populations of hindbrain neurons during spontaneous eye movement in the larval zebrafish. Putative velocity-to-position oculomotor integrator neurons were identified that showed a broad spatial distribution and diversity of encoding. Optical identification of integrator neurons was confirmed with targeted loose-patch electrical recording and laser ablation. The general regression-based approach we demonstrate should be widely applicable to calcium imaging time series in behaving animals.


2018 ◽  
Vol 8 (2) ◽  
pp. 20170048 ◽  
Author(s):  
M. I. Disney ◽  
M. Boni Vicari ◽  
A. Burt ◽  
K. Calders ◽  
S. L. Lewis ◽  
...  

Terrestrial laser scanning (TLS) is providing exciting new ways to quantify tree and forest structure, particularly above-ground biomass (AGB). We show how TLS can address some of the key uncertainties and limitations of current approaches to estimating AGB based on empirical allometric scaling equations (ASEs) that underpin all large-scale estimates of AGB. TLS provides extremely detailed non-destructive measurements of tree form independent of tree size and shape. We show examples of three-dimensional (3D) TLS measurements from various tropical and temperate forests and describe how the resulting TLS point clouds can be used to produce quantitative 3D models of branch and trunk size, shape and distribution. These models can drastically improve estimates of AGB, provide new, improved large-scale ASEs, and deliver insights into a range of fundamental tree properties related to structure. Large quantities of detailed measurements of individual 3D tree structure also have the potential to open new and exciting avenues of research in areas where difficulties of measurement have until now prevented statistical approaches to detecting and understanding underlying patterns of scaling, form and function. We discuss these opportunities and some of the challenges that remain to be overcome to enable wider adoption of TLS methods.


Sign in / Sign up

Export Citation Format

Share Document