Experiments on high-detailed mapping of tropospheric NO2 using GSA/Resurs-P observations: results, validation with models and measurements, estimation of emission power

2021 ◽  
Author(s):  
Svetlana A. Zakharova ◽  
Marina A. Davydova ◽  
Alexander N. Borovski ◽  
Karim A. Shukurov ◽  
Yulia V. Mukhartova ◽  
...  
2021 ◽  
Vol 13 (10) ◽  
pp. 1877
Author(s):  
Ukkyo Jeong ◽  
Hyunkee Hong

Since April 2018, the TROPOspheric Monitoring Instrument (TROPOMI) has provided data on tropospheric NO2 column concentrations (CTROPOMI) with unprecedented spatial resolution. This study aims to assess the capability of TROPOMI to acquire high spatial resolution data regarding surface NO2 mixing ratios. In general, the instrument effectively detected major and moderate sources of NO2 over South Korea with a clear weekday–weekend distinction. We compared the CTROPOMI with surface NO2 mixing ratio measurements from an extensive ground-based network over South Korea operated by the Korean Ministry of Environment (SKME; more than 570 sites), for 2019. Spatiotemporally collocated CTROPOMI and SKME showed a moderate correlation (correlation coefficient, r = 0.67), whereas their annual mean values at each site showed a higher correlation (r = 0.84). The CTROPOMI and SKME were well correlated around the Seoul metropolitan area, where significant amounts of NO2 prevailed throughout the year, whereas they showed lower correlation at rural sites. We converted the tropospheric NO2 from TROPOMI to the surface mixing ratio (STROPOMI) using the EAC4 (ECMWF Atmospheric Composition Reanalysis 4) profile shape, for quantitative comparison with the SKME. The estimated STROPOMI generally underestimated the in-situ value obtained, SKME (slope = 0.64), as reported in previous studies.


2006 ◽  
Vol 26 (17-18) ◽  
pp. 2228-2235 ◽  
Author(s):  
Chenhua Gou ◽  
Ruixian Cai ◽  
Guoqiang Zhang

2009 ◽  
Vol 9 (11) ◽  
pp. 3641-3662 ◽  
Author(s):  
D. Chen ◽  
B. Zhou ◽  
S. Beirle ◽  
L. M. Chen ◽  
T. Wagner

Abstract. Zenith-sky scattered sunlight observations using differential optical absorption spectroscopy (DOAS) technique were carried out in Shanghai, China (31.3° N, 121.5° E) since December 2006. At this polluted urban site, the measurements provided NO2 total columns in the daytime. Here, we present a new method to extract time series of tropospheric vertical column densities (VCDs) of NO2 from these observations. The derived tropospheric NO2 VCDs are important quantities for the estimation of emissions and for the validation of satellite observations. Our method makes use of assumptions on the relative NO2 height profiles and the diurnal variation of stratospheric NO2 VCDs. The main error sources arise from the uncertainties in the estimated stratospheric slant column densities (SCDs) and the determination of tropospheric NO2 air mass factor (AMF). For a polluted site like Shanghai, the accuracy of our method is conservatively estimated to be <25% for solar zenith angle (SZA) lower than 70°. From simultaneously performed long-path DOAS measurements, the NO2 surface concentrations at the same site were observed and the corresponding tropospheric NO2 VCDs were estimated using the assumed seasonal NO2 profiles in the planetary boundary layer (PBL). By making a comparison between the tropospheric NO2 VCDs from zenith-sky and long-path DOAS measurements, it is found that the former provides more realistic information about total tropospheric pollution than the latter, so it's more suitable for satellite data validation. A comparison between the tropospheric NO2 VCDs from ground-based zenith-sky measurements and SCIAMACHY was also made. Satellite validation for a strongly polluted area is highly needed, but exhibits also a great challenge. Our comparison shows good agreement, considering in particular the different spatial resolutions between the two measurements. Remaining systematic deviations are most probably related to the uncertainties of satellite data caused by the assumptions on aerosol properties as well as the layer heights of aerosols and NO2.


1999 ◽  
Vol 16 (8) ◽  
pp. 799-809 ◽  
Author(s):  
KLAUS TIEMANN ◽  
STEFAN LOHMEIER ◽  
STEFANIE KUNTZ ◽  
JÖRG KÖSTER ◽  
CHRISTOPH POHL ◽  
...  

1993 ◽  
Vol 36 (1) ◽  
pp. 32-36 ◽  
Author(s):  
S. A. Kaufman ◽  
A. F. Kotyuk ◽  
A. A. Liberman

2018 ◽  
Vol 43 (7) ◽  
pp. 1578 ◽  
Author(s):  
Hermann Kahle ◽  
Kostiantyn Nechay ◽  
Jussi-Pekka Penttinen ◽  
Antti Tukiainen ◽  
Sanna Ranta ◽  
...  

2011 ◽  
Vol 11 (22) ◽  
pp. 11647-11655 ◽  
Author(s):  
L. C. Valin ◽  
A. R. Russell ◽  
R. C. Hudman ◽  
R. C. Cohen

Abstract. Inference of NOx emissions (NO+NO2) from satellite observations of tropospheric NO2 column requires knowledge of NOx lifetime, usually provided by chemical transport models (CTMs). However, it is known that species subject to non-linear sources or sinks, such as ozone, are susceptible to biases in coarse-resolution CTMs. Here we compute the resolution-dependent bias in predicted NO2 column, a quantity relevant to the interpretation of space-based observations. We use 1-D and 2-D models to illustrate the mechanisms responsible for these biases over a range of NO2 concentrations and model resolutions. We find that predicted biases are largest at coarsest model resolutions with negative biases predicted over large sources and positive biases predicted over small sources. As an example, we use WRF-CHEM to illustrate the resolution necessary to predict 10 AM and 1 PM NO2 column to 10 and 25% accuracy over three large sources, the Four Corners power plants in NW New Mexico, Los Angeles, and the San Joaquin Valley in California for a week-long simulation in July 2006. We find that resolution in the range of 4–12 km is sufficient to accurately model nonlinear effects in the NO2 loss rate.


Energy Policy ◽  
2009 ◽  
Vol 37 (2) ◽  
pp. 669-679 ◽  
Author(s):  
Andreas Poullikkas ◽  
Ioannis Hadjipaschalis ◽  
Costas Christou

Sign in / Sign up

Export Citation Format

Share Document